521
maximum values of wind speed measured at the
stationlocatedinthesouthernpartoftheportaswell
as for the extreme values of significant wave height
determined on the basis of reanalysis taking into
account the prediction for the period 2041‐2100. In
addition,thepaperincludesan
analysisofthespatial
distributionofseacurrentsintheareaoftheportof
Gdyniaandthechangeinthethicknessoftheseabed
causedbytheextremevaluesofthespeedofbottom
currents. Both of these factors, directly affect the
change in the shape of the seabed,
and thus the
conditions in the dredged waterways and the
potentialreleaseofhazardouspollutantsaccumulated
in port sediments.Knowing the detailed
characteristicsofwaveandseacurrentsineachbasin
under extreme storm conditions allows preventive
measures to be taken that can negate damage from
inadequate ship mooring and coastal
protection
safeguards, as well as support the decision‐making
process for ship traffic in the port. Knowing the
extremevalues,especiallythevaluesinaonce‐in‐100‐
yeareventcanbecrucialfor strength calculationsof
shoreline structures and infrastructure. The most
exposedpartoftheport,underextreme
conditions,is
the awanport (outport), where the speed of wind‐
generated currents (20 ms
‐1
) can reach 0.4 ms
‐1
. The
largestchangeinthethicknessofseabedsedimentsin
the case of the scenario assuming daily impact of
longshorecurrentswithaspeedof0.79ms
‐1
occurred
intheareaofthenorthernpartofthecoastadjacentto
theport(Gdynia‐Oksywiebeach),wheretherewasan
increaseinthicknessfrom0.5 cm to 2 cm, whilethe
largest erosion transport occurred at the main
breakwater. Currents from the eastern direction
(transport from the sea)
were characterized by
sedimentaccumulation(+2.0‐2.5cm)inthevicinityof
theportʹsapproachtrack.Itshouldbenotedthatthe
simulation assumed a daily impact of such strong
currents,whichintheactualdistributionrepresenta
small share and are ephemeral in nature, and the
sedimentological environment
of the seabed
maintains the balance of erosion‐accumulation
balanceonalongertimescale.
REFERENCES
[1]C3S: Caires, S., and Yan, K. 2020. Ocean surface wave
indicators for the European coast from 1977 to 2100
derived from climate projections. Copernicus Climate
Change Service (C3S) Climate Data Store (CDS).
(AccessedonDD‐MMM‐YYYY),10.24381/cds.1a072dd6
[2]Cieślak, A., 1985. Ruch rumowiska wzdłuż wybrzeża
Polski
[Sediment motion along the coast of Poland],
PraceInstytutuMorskiego690.Gdańsk
[3]Cieślikiewicz, W., Herman, A. 2001. Wind wave
modelling overtheBalticSeaandthe Gulfof Gdańsk.
Inż.Mor.Geotech22,4,173‐184(inPolish)
[4]CieślikiewiczW.,HermanA.2002.
Numericalmodelling
ofwavesandcurrentsovertheBalticSeaandtheGulfof
Gdańsk.
[5]Cieślikiewicz W., Dudkowska A., Gic‐Grusza G. 2016.
PortofGdańskandPortofGdyniaʹsexposuretothreats
resultingfrom stormextremes.JournalofPolishSafety
and Reliability Association, Summer Safety and
ReliabilitySeminars,2016,vol.7,no.1,pp.29‐36
[6]CopernicusClimateChangeService(C3S)(2017):ERA5:
Fifth generation of ECMWF atmospheric reanalyses of
theglobalclimate.CopernicusClimateChangeService
Climate Data Store (CDS), date of access.
https://cds.climate.copernicus.eu/cdsapp#!/home
[7]Cupial A., Cieslikiewicz W. 2020. Characteristics of
extreme
wind wave events in the Gulf of Gdańsk and
associated atmospheric conditions over the Baltic Sea.
ConferencePaper,EGU2020.
[8]Dudkowska A., Gic‐Grusza G. 2017. Wave‐induced
bedload transport – a study of the southern Baltic Sea
coastalzone.Geologos23,1.doi:10.1515/logos‐2017‐0001
[9]Gic‐Grusza,
G. & Dudkowska, A., 2014. Modeling of
wind wave induced sediment transport in the coastal
zone of Polish marine areas (Southern Baltic). Baltic
nternational Symposium (BALTIC), 2014 IEEE/OES,
Tallin,1–5.
[10]JeglińskiW.,UścinowiczS.,KramarskaR.,Przezdziecki
P., 2012.Mapa geologiczna polskich obszarów
morskich.PIG‐PIB.
[11]
Leppäranta M.,Myrberg, K. 2009. Physical
Oceanography of the BalticSea. Springer‐Verlag Berlin
Heidelberg
[12]LiuzhiZhao,VijayPanchang,WChen,ZDemirbilek,N
Chhabbra,2001. Simulationofwavebreakingeffectsin
two‐dimensional elliptic harbor wave models, Coastal
Engineering, Volume 42, Issue 4, Pages 359‐373, ISSN
0378‐3839,
https://doi.org/10.1016/S0378‐3839(00)00069‐7.
[13]Miętus M., Filipiak J., Owczarek M.2004. Klimat
wybrzeża południowego Bałtyku. Stan obecny i
perspektywy zmian [w:]Cyberski J.(red.)Środowisko
polskiej strefy południowego Bałtyku‐stan obecny i
przewidywane zmiany w przededniu integracji
europejskiej,GTNGdańsk,s.11‐44
[14]Róż
yńskiG.2010.WaveClimateintheGulfofGdańsk
vs.OpenBalticSeanearLubiatowo,Poland.Archivesof
Hydro‐EngineeringandEnvironmentalMechanics57,2,
167‐176.
[15]Soomere T., Behrens A., Tuomi L. et al. 2008.Wave
conditionsintheBalticProperandintheGulfofFinland
during
windstormGudrun.NaturalHazardsandEarth
SystemScience,CopernicusPublicationsonbehalfofthe
EuropeanGeosciencesUnion.8,1,37‐46.
[16]SapiegaP.,ZalewskaT.,StruzikP.2023.Applicationof
SWANmodelforwaveforecastinginthesouthernBaltic
Seasupplementedwithmeasurementandsatellitedata,
Environmental Modelling &
Software, 105624, ISSN
1364‐8152,https://doi.org/10.1016/j.envsoft.2023.105624.
[17]Uścinowicz S., 1997, The Gdańsk Basin, Prz. Geol., 45
(6),589–594,(inPolish)
[18]WeisseR.,DailidieneI.,HünickeB.,KahmaK.,Madsen
K.,OmstedtA.,ParnellK.,SchöneT.,SoomereT.,Zhang
W., Zorita E. 2021. Sea level dynamics and coastal
erosion intheBalticSea region. arth Syst. Dynam., 12,
871–898,https://doi.org/10.5194/esd‐12‐871‐2021
[19]Zalewska T., Przygrodzki P., Suplińska M., Saniewski
M., 2020, Geochronology of the southern Baltic Sea
sediments derived from 210Pb dating, Quaternary
Geochronology56(2020)101039.
[20]Zeidler, R. B. (Ed.). 1992. Assessment of
the
vulnerabilityofPoland`scoastalareasto sealevel rise.
H*T*S*.Gdańsk.165.
[21]Zeidler, R. B., Wróblewski, A., Miętus, M. et al. 1995.
Wind,waveandstormsurgeregimeatthePolishBaltic
coast. Polish coast: past, present, future. J. Coastal Res
22,33‐55.