287
are: Branchand bound (BB); Dynamic Programming
(DP);EvolutionaryAlgorithm(EA);NeuralNetworks
(NN). After a brief analysis based on the results
included,itcanbeseenthat:
for the NN algorithm, the calculation time
(simulation duration) is much shorter than for
othermethodsandamountsto1.2s,
minimalspeedchangeonlyinonecasefortheNN
algorithm,
manoeuvre speed is the fastest for the EA
algorithm.
Table4.Comparisonoftheresultsoffouralgorithmsfor
solvingthesituationinFigure1A
________________________________________________
BBDPEANN
________________________________________________
P. C S C S C S C S
[°] [kn] [°] [kn] [°] [kn] [°] [kn]
________________________________________________
1 59 10 67 10 75 10 60 10.3
2 59 10 59.6 10 64 10 60 10.3
3 59 10 56 10 59.1 10 60 10.3
4 59 10 53.7 10 56 10 45 10
5 59 10 51.2 10 53.8 10 45 10
6 31 10 45 10 52.6
10 45 10
7 31 10 30 10 45 10 45 10
8 31 10 42 10 45 10 30 10
9 31 10 44 10 45 10 30 10
10 45 10 45 10 45 10 30 10
________________________________________________
C–Course;S–Speed
4 CONCLUSIONS
This study was to show the possibilities of
formulatingamodeloftheprocessofsafeshipcontrol
inablurredenvironmentandsolvingitwiththeuse
ofartificialintelligence.Thealgorithmisabletosolve
much more complicated situations, but sometimes
theremaybemanoeuvresinwhich
thepathlossesare
large. For this reason, the algorithm needs to be
refined towards a more precise definition of the
membership function of the set of constraints. The
advantageofthealgorithmisthattheshipʹstrajectory
returnstoitsoriginalcourseifthereisnolongerany
danger.Inaddition,theresultofthepresentedneural
networkisselectedfrommanyconnections,thanksto
whichthedeterminedtrajectoryisthebestpossibleto
obtain in a given situation. To sum up, the created
algorithmcan be usedas a decision support tool by
thenavigatorinorderto
maintainsafeseanavigation.
The obtained simulation results are promising and
showthegreatpotentialofthealgorithm.
REFERENCES
[1]D.C. Donderi, R. Mercer, M. B. Hong, and D.Skinner,
‘Simulated navigation performance with marine
electronic chart and information display systems
(ECDIS)’,J.Navig.,vol.57,no.2,pp.189–202,May2004,
doi:10.1017/S0373463304002668.
[2]A.WeintritandK.Stawicki,‘OperationalRequirements
for Electronic Chart Display and Information Systems
(ecdis). Risk of Overreliance on Ecdis’, Transp. Probl.,
vol. 3, no. 2, pp. 75–82, 2008, Accessed: Apr. 26, 2023.
[Online]. Available:
https://www.webofscience.com/wos/woscc/summary/78
1e4681‐1996‐48ac‐bba3‐e9c24d9d4f0e‐
85823306/relevance/1
[3]S. Zuskin, D. Brcic, and D. Sabalja, ‘A Contribution to
Improving the Standards of ECDIS Training’, Pomor.‐
Sci.J.Marit.Res.,vol.
27,no.1,pp.131–148,Jun.2013,
Accessed: Apr. 26, 2023. [Online]. Available:
https://www.webofscience.com/wos/woscc/summary/78
1e4681‐1996‐48ac‐bba3‐e9c24d9d4f0e‐
85823306/relevance/1
[4]T.Abramowicz‐GerigkandJ.Jachowski,‘ShipBerthing
and Unberthing Monitoring System in the Ferry
Terminal’, Sensors, vol. 22, no. 23, p. 9133, Dec. 2022,
doi:10.3390/s22239133.
[5]J. Lisowski,
‘Sensitivity of Safe Trajectory in a Game
Environment on Inaccuracy of Radar Data in
AutonomousNavigation’,Sensors,vol.19,no.8,p.1816,
Apr.2019,doi:10.3390/s19081816.
[6]A. Lazarowska, ‘Comparison of discrete artificial
potential field algorithm and wave‐front algorithm for
autonomousshiptrajectoryplanning’,IEEEAccess,vol.
8,pp.
221013–221026,2020.
[7]R.ZacconeandM.Martelli,‘Arandomsamplingbased
algorithm for ship path planning with obstacles’, in
Proceedings of the International Ship Control Systems
Symposium(iSCSS),2018,p.4.
[8]R.Śmierzchalski and A. Witkowska, ‘Advanced Ship
Control Methods’,in AutomaticControl, Robotics, and
InformationProcessing,Springer,
2021,pp.617–643.
[9]S.Ni,Z.Liu,Y.Cai,andX.Wang,‘Modellingofship’s
trajectory planning in collision situations by hybrid
geneticalgorithm’,Pol.Marit.Res.,vol.25,no.3(99),pp.
14–25,2018.
[10]R. Szlapczynski and H. Ghaemi, ‘Framework of an
Evolutionary Multi‐Objective Optimisation Method for
Planning a Safe Trajectory for a Marine Autonomous
SurfaceShip’,Pol.Marit.Res.,vol.26,no.4,pp.69–79,
2019,doi:10.2478/pomr‐2019‐0068.
[11]Z. Pietrzykowski et al., ‘The autonomous navigation
system of a sea‐going vessel’, Ocean Eng., vol. 261, p.
112104,Oct.2022,doi:10.1016/j.oceaneng.2022.112104.
[12]A.
Weintrit and T. Neumann, Advances in Marine
NavigationandSafetyofSeaTransportation.CRCPress,
2019.
[13]K.Janczyk,J.Rumiński,T.Neumann,N.Głowacka,and
P. Wiśniewski, ‘Age Prediction from Low Resolution,
Dual‐EnergyX‐rayImagesUsingConvolutionalNeural
Networks’, Appl. Sci., vol. 12, no. 13,
Art. no. 13, Jan.
2022,doi:10.3390/app12136608.
[14]M. Rybczak and W. Gierusz, ‘Maritime Autonomous
Surface Ships in Use with LMI and Overriding
TrajectoryController’,Appl.Sci.‐Basel,vol.12,no.19,p.
9927,Oct.2022,doi:10.3390/app12199927.
[15]R. Szlapczynski and J. Szlapczynska, ‘A ship domain‐
basedmodelof
collisionriskfornear‐missdetectionand
CollisionAlertSystems’,Reliab.Eng.Syst.Saf.,vol.214,
p.107766,Oct.2021,doi:10.1016/j.ress.2021.107766.
[16]M. Mohamed‐Seghir, K. Kula, and A. Kouzou,
‘Artificial Intelligence‐Based Methods for Decision
SupporttoAvoidCollisionsatSea’,Electronics,vol.10,
no. 19, p. 2360, Oct.
2021, doi:
10.3390/electronics10192360.
[17]J.Lisowski,phamTiep,andM.Mohamed‐Seghir,‘Safe
ship automatic control taking into consideration fuzzy
propertiesoftheprocess’,Pol.Marit.Res.,vol.1,pp.25–
32,Jan.1994.
[18]P. Borkowski, Z. Pietrzykowski, and J. Magaj, ‘The
AlgorithmofDetermininganAnti‐CollisionManoeuvre
Trajectory
Based on the Interpolation of Ship’s State
Vector’,Sensors,vol.21,no.16,p.5332,Aug.2021,doi:
10.3390/s21165332.
[19]Y.‐Y. Chen, M.‐Z. Ellis‐Tiew, W.‐C. Chen, and C.‐Z.
Wang,‘FuzzyRiskEvaluationandCollisionAvoidance
ControlofUnmannedSurfaceVessels’,Appl.Sci.‐Basel,
vol. 11,
no. 14, p. 6338, Jul. 2021, doi:
10.3390/app11146338.
[20]R. F. Romero, J. Kacprzyk, and F. Gomide, ‘Neural
Network Based Algorithm for Dynamic System
Optimization’, Asian J. Control, vol. 3, no. 2, pp. 131–
142,2001,doi:10.1111/j.1934‐6093.2001.tb00052.x.