68
navigation measurements. The above model of the
random phase
ϕ
j(t) of the measurement signal y(t) can
be used to assess the accuracy and resistance of the
Galileo satellite navigation system against
interference.
REFERENCES
[1] Dzunda, M; Kotianova, N; Dzurovčin, P. Selected
Aspects of Using the Telemetry Method in Synthesis of
RelNav System for Air Traffic Control. International
journal of environmental research and public health 17
(1), Jan 2020
[2] Dzunda, M; Dzurovcin, P. Selected Aspects of
Navigation System Synthesis for Increased Flight Safety,
Protection of Human Lives, and Health. International
journal of environmental research and public health 17
(5), Mar 2020,
[3] Hein, Guenter W., Godet, Jeremie, Issler, Jean-Luc,
Martin, Jean-Christophe, Lucas-Rodriguez, Rafael, Pratt,
Tony, "The GALILEO Frequency Structure and Signal
Design," Proceedings of the 14th International Technical
Meeting of the Satellite Division of The Institute of
Navigation (ION GPS 2001), Salt Lake City, UT,
September 2001, pp. 1273-1282.
[4] Bidaine, Benoît. Ionosphere Crossing of Galileo Signals,
2006.
[5] Geng, Jianghui, and Jiang Guo. "Beyond three
frequencies: An extendable model for single-epoch
decimeter-level point positioning by exploiting Galileo
and BeiDou-3 signals." Journal of Geodesy, 2020, 94.1,
pp. 1-15.
[6] Zhao, Lei, Paul Blunt, and Lei Yang. Performance
Analysis of Zero-Difference GPS L1/L2/L5 and Galileo
E1/E5a/E5b/E6 Point Positioning Using CNES
Uncombined Bias Products. Remote Sensing, 2020, 14.3,
pp. 650.
[7] Ardizzon, Francesco. Authenticated Timing Protocol
Based on Galileo ACAS. Sensors 2022, 22.16, pp. 6298.
[8] Liu, Gen, Xiaohong Zhang, and Pan Li. "Improving the
performance of Galileo uncombined precise point
positioning ambiguity resolution using triple-frequency
observations." Remote Sensing 11.3 (2019): 341.
[9] Alonso, María Teresa, et al. "Galileo Broadcast
Ephemeris and Clock Errors Analysis: 1 January 2017 to
31 July 2020." Sensors 20.23 (2020): 6832.
[10] Prochniewicz, Dominik, and Maciej Grzymala.
"Analysis of the impact of multipath on Galileo system
measurements." Remote Sensing 13.12 (2021): 2295.
[11] Das, Priyanka, Lorenzo Ortega, Jordi Vilà-Valls,
François Vincent, Eric Chaumette, and Loïc Davain.
"Performance limits of GNSS code-based precise
positioning: GPS, galileo & meta-signals." Sensors 20,
2020, no. 8 , pp. 2196.
[12] Borio, Daniele, and Ciro Gioia. "Galileo: The added
value for integrity in harsh environments." Sensors 16.1
(2016): 111.
[13] J Julien, Olivier, Christophe Macabiau, and Jean-Luc
Issler. "Ionospheric delay estimation strategies using
Galileo E5 signals only." In Proceedings of the 22nd
International Technical Meeting of The Satellite Division
of the Institute of Navigation (ION GNSS 2009), pp.
3128-3141. 2009.
[14] Afifi, Akram, and Ahmed El-Rabbany. Stochastic
modeling of Galileo E1 and E5a signals.International
Journal of Engineering and Innovative Technology
(IJEIT) 3.6, 2013, pp. 188-192.
[15] Jovanovic, Aleksandar, Cécile Mongrédien, Youssef
Tawk, Cyril Botteron, and Pierre-André Farine. "Two-
step Galileo E1 CBOC tracking algorithm: when
reliability and robustness are keys!." International
Journal of Navigation and Observation2012 (2012).
[16] Arribas, Javier, Jordi Vilà ‐ Valls, Antonio Ramos,
Carles Fernández‐Prades, and Pau Closas. Air traffic
control radar interference event in the Galileo E6 band:
Detection and localization. Navigation 66 2019, no. 3, pp.
505-522.
[17] Setlak, Lucjan, and Rafał Kowalik. E1 Signal Processing
of the Galileo System in the Navigation Receiver.
Communications-Scientific letters of the University of
Zilina, 2021, 23.3, E46-E55.
[18] Pascual, Daniel, Hyuk Park, Adriano Camps, A.
Alonso, and Raul Onrubia. "Comparison of GPS L1 and
Galileo E1 signals for GNSS-R ocean altimetry." In 2013
IEEE International Geoscience and Remote Sensing
Symposium-IGARSS, pp. 358-361. IEEE, 2013.
[19] Hein, Guenter W., J. Godet, Jean-Luc Issler, Jean-
Christophe Martin, Rafael Lucas-Rodriguez and Tony
Pratt. The GALILEO Frequency Structure and Signal
Design. (2001).
[20] Sośnica, Krzysztof, Radosław Zajdel, Grzegorz Bury,
Kamil Kazmierski, Tomasz Hadaś, Marcin Mikoś, Maciej
Lackowski, and Dariusz Strugarek. Contribution of the
Galileo system to space geodesy and fundamental
physics. No. EGU22-2477. Copernicus Meetings, 2022.
[21] Galileo navigation signals and frequencies . Available
online:
https://www.esa.int/Applications/Navigation/Galileo/Ga
lileo_navigation_signals_and_frequencies (accessed on
03.11.2022).
[22] EUROPEAN GNSS (GALILEO) OPEN SERVICE
SIGNAL-IN-SPACE INTERFACE CONTROL
DOCUMENT Issue 2.0, January 2021 (accessed on
03.11.2022).
[23] Olivier Julien, Christophe Macabiau, Emmanuel
Bertrand. Analysis of Galileo E1 OS unbiased
BOC/CBOC tracking techniques for mass market
applications. NAVITEC, 5th ESA Workshop on Satellite
Navigation Technologies and European Workshop on
GNSS Signals, Noordwijk, Netherlands, DEC 2010, pp 1-
8, 10.1109/NAVITEC.2010.5708070. hal-01022203
[24] European Commission (2010), European GNSS (Galileo)
Open Service – Signal-In-Space Interface Control
Document Issue 1, February.
[25] Khan, Subhan & Jawad, Muhammad & Safder,
Muhammad & Jaffery, Mujtaba & Javid, Salman.
Analysis of the satellite navigational data in the
Baseband signal processing of Galileo E5 AltBOC signal.
Arctic, 2018, 71. 2-17.
[26] Maufroid, Xavier, Jesús Cegarra, José Caro, Laura
García, and Chiara Scaleggi. The Galileo Return Link
Service Provider in the Works. In Proceedings of the
30th International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS+
2017), pp. 1333-1346. 2017.
[27] J.A Ávila Rodríguez, Galileo Signal Plan, University
FAF Munich, Germany, 2011
[28] Maufroid, Xavier, Jesús Cegarra, José Caro, Laura
García, and Chiara Scaleggi. "The Galileo Return Link
Service Provider in the Works." In Proceedings of the
30th International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS+
2017), pp. 1333-1346. 2017.
[29] Elhawary, M., Gomah, G., Zekry, A., & Hafez, I.
Simulation of the E1 and E6 Galileo Signals using
SIMULINK. International Journal of Computer
Applications, 2014, 88(15), 41–48.
https://doi.org/10.5120/15431-4043
[30] Galileo Signal Plan - Navipedia. Available from:
https://gssc.esa.int/navipedia/index.php/Galileo_Signal_
Plan (accessed on 03.11.2022).
[31] Xu, W.; Yan, C.; Chen, J. Investigation of Precise Single-
Frequency Time and Frequency Transfer with Galileo
E1/E5a/E5b/E5/E6 Observations. Remote Sens. 2022, 14,
5371. https://doi.org/10.3390/rs14215371.