49
5. An R-based software for PoO model development
and validation.
The proposed method and the PoO model are
demonstrated in the case scenario of a sole-GPS,
single-frequency commercial-grade GPS positioning
in the Arctic polar region. As the result, the PoO
model is developed based on the experimental data
taken in the real and statistically representative
conditions. The PoO model utilisation for risk
assessment is demonstrated in the case of a maritime
GPS application. The research will continue with
improvement and advancement of developed R-based
software that will allow for specification of
positioning environment and GPS-based application
utilisation scenario, as well as with generalisation of
the PoO method development.
REFERENCES
[1] HM Government Office for Science. (2018). Satellite-
derived Time and Position: A Study of Critical
Dependencies. HM Government. London, UK. Available
at: https://bit.ly/2MEeBy6 (open access)
[2] Filjar, R, Damas, M C, Iliev, T B. (2020). Resilient Satellite
Navigation Empowers Modern Science, Economy, and
Society. CIEES 2020. IOP Conf. Ser: Mater Sci Eng 1032,
012001 (10 pages). Borovets, Bulgaria. doi:10.1088/1757-
899X/1032/1/012001 (open access)
[3] Filić, M, Filjar, R. (2018). Modelling the Relation between
GNSS Positioning Performance Degradation, and Space
Weather and Ionospheric Conditions using RReliefF
Features Selection. Proc of 31st International Technical
Meeting ION GNSS+ 2018, 1999-2006. Miami, FL. doi:
10.33012/2018.16016
[4] Sanz Subirana, J. et al. (2013). GNSS Data Processing –
Vol. I: Fundamentals and Algorithms. European Space
Agency (ESA). Nordwijk, The Netherlands. ISBN978-92-
9221-886-7. Available at: https://tinyurl.com/wbhu57us
(open access)
[5] Teunissen, P J G, Montenbruck, O. (eds). (2017). Springer
Handbook of Global Navigation Satellite Systems.
Springer International Publishing AG. Cham,
Switzerland. ISBN: 978-3-319-42928-1
[6] Filjar, R. (2022). An application-centred resilient GNSS
position estimation algorithm based on positioning
environment conditions awareness. Proc ION ITM 2022,
1123 - 1136. Long Beach, CA. doi: 10.33012/2022.18247
[7] Renfro, B A, Stein, M, Reed, E B, Villalba, E J. (2021). An
Analysis of Global Positioning System Standard
Positioning Service Performance for 2020. Space and
Geophysics Laboratory, Applied Research Laboratories,
The University of Texas at Austin. Austin, TX. Available
at: https://www.gps.gov/systems/gps/performance/2020-
GPS-SPS-performance-analysis.pdf
[8] EUSPA. (2021). Report on Maritime and Inland
Waterways User Needs and Requirements: Outcome of
the EUSPA Consultation Platform. European Agency for
Space Programme (EUSPA). Prag, Czechia. Available at:
https://www.gsc-
europa.eu/sites/default/files/sites/all/files/Report_on_Us
er_Needs_and_Requirements_Maritime.pdf
[9] Sikirica, N, Dimc, F, Jukić, O, Iliev, T B, Špoljar, D, Filjar,
R. (2021). A Risk Assessment of Geomagnetic Conditions
Impact on GPS Positioning Accuracy Degradation in
Tropical Regions Using Dst Index. Proc ION ITM 2021,
606-615. San Diego, CA. doi: 10.33012/2021.17852
[10] Špoljar, D, Jukić, O, Sikirica, N, Lenac, K, Filjar, R.
(2021). Modelling GPS Positioning Performance in
Northwest Passage during Extreme Space Weather
Conditions. TransNav, 15(1), 165-169.
doi:10.12716/1001.15.01.16 (open access)
[11] Thomas, M et al. (2011). Global Navigation Space
Systems: reliance and vulnerabilities. The Royal
Academy of Engineering. London, UK. Available at:
https://tinyurl.com/55vnk8tn
[12] Filjar, R, Sikirica, N, Iliev, T B, Jukić, O. (2022). A Risk
Assessment of Space Weather-caused GPS Positioning
Accuracy Degradation for GPS Applications in Polar
Regions. Presentation at 21st International Beacon
Satellite Symposium. Boston College, Chestnut Hill, MA.
[13] Jukić, O, Iliev, T B, Sikirica, N, Lenac, K, Špoljar, D,
Filjar, R. (2020). A method for GNSS positioning
performance assessment for location- based services.
Proc of 28th Telecommunications Forum TELFOR 2020
(4 pages). Belgrade, Serbia. doi:
10.1109/TELFOR51502.2020.9306548
[14] Volpe. (2001). Vulnerability Assessment of the
Transportation Infrastructure Relying on the Global
Positioning System. John A. Volpe National
Transportation Systems Center. Cambridge, MA.
Avalaible at: https://rosap.ntl.bts.gov/view/dot/8435
[15] Filić, M, Filjar, R. (2018). A South Pacific Cyclone-
Caused GPS Positioning Error and Its Effects on Remote
Island Communities. TransNav, 12(4), 663-670. doi:
10.12716/1001.12.04.03 (open access)
[16] Heđi, I, Malić, E, Sikirica, N, Musulin, M, Šimag, D,
Filjar, R. (2022). An analysis of GNSS TEC predictability
during a rapidly developing short-term geomagnetic
storm using Shannon entropy. Proc of 30th TELFOR, 31 -
35. Belgrade, Serbia. doi:
10.1109/TELFOR56187.2022.9983679
[17] Špoljar, D, Štajduhar, I, Lenac, K, Filjar, R. (2021). A
Predictive Model of Multipath Effect Contribution to
GNSS Positioning Error for GNSS-based Applications in
Transport and Telecommunications. The Journal of
CIEES, 1(2), 7–13. doi: 10.48149/jciees.2021.1.2.1 (open
access)
[18] Rumora, I, Sikirica, N, Filjar, R. (2018). An Experimental
Identification of Multipath Effect in GPS Positioning
Error. TransNav, 12(1), 29-32. doi: 10.12716/1001.12.01.02
(open access)
[19] Maindonald, J., Brown, W. J. (2010). Data Analyisis and
Graphics Using R: An Example-Based Approach (3rd
ed). Cambridge University Press. Cambridge, UK. ISBN
978-0521762939
[20] Forsyth, D. (2018). Probability and Statistics for
Computer Science. Springer International Publishing
AG. Cham, Switzerland. ISBN 978-3-319-64409-7
[21] Institute for Land Reclamation and Improvement
(ILRI). (2022). CumFreq, a tool for cumulative frequency
analysis of a single variable and for probability
distribution fitting (freeware). Executables and
documentation avaiable at:
https://www.waterlog.info/cumfreq.htm (open access)
[22] R-project. (2023). The R environment for statistical
computing, ver. 4.2.2. R-project. Vienna. Austria.
Available at: https://www.r-project.org
[23] Delignette-Muller, M L, & Dutang, C. (2015).
fitdistrplus: An R Package for Fitting Distributions.
Journal of Statistical Software, 64(4), 1–34. doi:
10.18637/jss.v064.i04 (open access)
[24] Parkinson, B W, Spilker Jr, J J. (1996). Global Positioning
System: Theory and Applications (Vol. I.). AIAA,
Washington, DC. ISBN 978-1-56347-106-3
[25] Filić, M, Grubišić, L, Filjar, R. (2018). Improvement of
standard GPS position estimation algorithm through
utilization of Weighted Least-Square approach. Proc of
11th Annual Baška GNSS Conference, 7-19. Baška, Krk
Island, Croatia. Available: at:
https://www.pfri.uniri.hr/web/hr/dokumenti/zbornici-
gnss/2018-GNSS-11.pdf (open access)
[26] IGS. (2023). International GNSS Service database.
Maintained by NASA. Available at (free registration