645
[18] Ilčev, D.S.: New Aspects of Progress in the
Modernization of the Maritime Radio Direction Finders
(RDF). Transactions on Maritime Science, 10(1), pp.68-83.
(2021). DOI: https://doi.org/10.7225/toms.v10.no01.005.
[19] Straser, V., Cataldi, D. and Cataldi, G.: Radio Direction
Finding (RDF)-Geomagnetic Monitoring Study of the
Himalaya Area in Search of Pre-Seismic Electromagnetic
Signals. Asian Review of Environmental and Earth
Sciences, 6(1), pp.16-27. (2019). DOI:
10.20448/journal.506.2019.61.16.27.
[20] Hashimoto, H., Makino, H., Yoshioka, H. and Matsuda,
A.: Ship-stopping algorithm utilizing VecTwin rudder
system for automatic collision prevention. Ocean
Engineering, 251, p.111098. (2022). DOI:
https://doi.org/10.1016/j.oceaneng.2022.111098.
[21] Rachman, D.M., Aoki, Y., Miyauchi, Y., Umeda, N. and
Maki, A.: Experimental Low-speed Positioning System
with VecTwin Rudder for Automatic Docking (Berthing).
arXiv preprint arXiv:2212.09880. (2022). DOI:
https://doi.org/10.48550/arXiv.2212.09880.
[22] Li, S., Liu, J., Negenborn, R.R. and Wu, Q.: Automatic
docking for underactuated ships based on multi-objective
nonlinear model predictive control. IEEE Access, 8,
pp.70044-70057. (2020). DOI:
10.1109/ACCESS.2020.2984812.
[23] Franchi, M., Ridolfi, A. and Pagliai, M.: A forward-
looking SONAR and dynamic model-based AUV
navigation strategy: Preliminary validation with
FeelHippo AUV. Ocean Engineering, 196, p.106770.
(2020). DOI:
https://doi.org/10.1016/j.oceaneng.2019.106770.
[24] Yang, D., Cheng, C., Wang, C., Pan, G. and Zhang, F.:
Side-scan sonar image segmentation based on multi-
channel CNN for AUV navigation. Frontiers in
Neurorobotics, 16, p.928206. (2022). DOI:
10.3389/fnbot.2022.928206.
[25] Wang, K., Tang, S., Ke, J. and Hou, Y.: A Small Active
Magnetic Antenna of Loran-C. IEEE Sensors Journal.
(2022). DOI: 10.1109/JSEN.2022.3222577.
[26] Honglei, Q., Xiaoqin, J., Li, C. and Jintao, Y.: November.
MEDLL-based method of ground-wave and cycle
identification for Loran-C signal. In 2019 14th IEEE
International Conference on Electronic Measurement &
Instruments (ICEMI) (pp. 114-123). IEEE. (2019). DOI:
10.1109/ICEMI46757.2019.9101476.
[27] Kim, Y., Fang, T.H., Kim, D., Seo, K. and Park, S.H.:
Loran-C Multiple Chain Positioning using ToA
Measurements. Journal of Navigation and Port Research,
43(1), pp.23-32. (2019). DOI:
http://dx.doi.org/10.5394/KINPR.2019.43.1.23.
[28] Bhardwaj, A.: Terrestrial and Satellite-Based Positioning
and Navigation Systems—A Review with a Regional and
Global Perspective. Engineering Proceedings, 2(1), p.41.
(2020). DOI: https://doi.org/10.3390/ecsa-7-08262.
[29] Otto, L.: Global challenges in maritime security.
Springer. (2020).
[30] Yang, C.S.: Maritime shipping digitalization: Blockchain-
based technology applications, future improvements, and
intention to use. Transportation Research Part E: Logistics
and Transportation Review, 131, pp.108-117. (2019). DOI:
https://doi.org/10.1016/j.tre.2019.09.020.
[31] Bai, X., Li, B., Xu, X. and Xiao, Y.: A Review of Current
Research and Advances in Unmanned Surface Vehicles.
Journal of Marine Science and Application, 21(2), pp.47-
58. (2022). DOI: https://doi.org/10.1007/s11804-022-00276-
9.
[32] Boviatsis, M. and Vlachos, G.: Sustainable Operation of
Unmanned Ships under Current International Maritime
Law. Sustainability, 14(12), p.7369. (2022). DOI:
https://doi.org/10.3390/su14127369.
[33] Munim, Z.H. and Haralambides, H.: Advances in
maritime autonomous surface ships (MASS) in merchant
shipping. Maritime Economics & Logistics, pp.1-8. (2022).
DOI: https://doi.org/10.1057/s41278-022-00232-y.
[34] Vidan, P.E.R.O., Bukljaš, M.I.H.A.E.L.A., Pavić, I. and
Vukša, S.: Autonomous Systems & Ships-Training and
Education on Maritime Faculties. In 8th International
Maritime Science Conference. (2019).
[35] Porathe, T.: Where does the pilot go when the
autonomous ship has no bridge? MASS Routing Service
and smart Local Information Centres. In Proceedings of
the Autonomous Ship Conference 2022, National
Maritime Museum, Greenwich, London, 31 March-1
April 2022. Royal Institution of Naval Architects.
[36] IMO.: Autonomous shipping. (2022). Available at:
https://www.imo.org/en/MediaCentre/HotTopics/Pages/
Autonomous-shipping.aspx, last assessed: 28-12-2022.
[37] Rybczak, M. and Gierusz, W.: Maritime Autonomous
Surface Ships in Use with LMI and Overriding Trajectory
Controller. Applied Sciences, 12(19), p.9927. (2022). DOI:
https://doi.org/10.3390/app12199927.
[38] Bratić, K., Pavić, I., Vukša, S. and Stazić, L.: A review of
autonomous and remotely controlled ships in maritime
sector. Transactions on Maritime Science, 8(02), pp.253-
265. (2019). DOI:
https://doi.org/10.7225/toms.v08.n02.011.
[39] Meyer, E., Heiberg, A., Rasheed, A. and San, O.:
COLREG-compliant collision avoidance for unmanned
surface vehicle using deep reinforcement learning. IEEE
Access, 8, pp.165344-165364. (2020). DOI:
10.1109/ACCESS.2020.3022600.
[40] Kim, H.G., Yun, S.J., Choi, Y.H., Ryu, J.K. and Suh, J.H.:
Collision Avoidance Algorithm Based on COLREGs for
Unmanned Surface Vehicle. Journal of Marine Science
and Engineering, 9(8), p.863. (2021). DOI:
https://doi.org/10.3390/jmse9080863.
[41] Zolich, A., Palma, D., Kansanen, K., Fjørtoft, K., Sousa, J.,
Johansson, K.H., Jiang, Y., Dong, H. and Johansen, T.A.:
Survey on communication and networks for autonomous
marine systems. Journal of Intelligent & Robotic Systems,
95(3), pp.789-813. (2019). DOI:
https://doi.org/10.1007/s10846-018-0833-5.
[42] Wright, R.G.: Unmanned and autonomous ships: an
overview of mass. Routledge. (2020).
[43] Zhao, S., Li, S., Qi, L. and Da Xu, L.: Computational
intelligence enabled cybersecurity for the internet of
things. IEEE Transactions on Emerging Topics in
Computational Intelligence, 4(5), pp.666-674. (2020). DOI:
10.1109/TETCI.2019.2941757.
[44] Pitsikalis, M., Bereta, K., Vodas, M., Zissis, D. and
Artikis, A.: Event Processing for Maritime Situational
Awareness. In Big Data Analytics for Time-Critical
Mobility Forecasting (pp. 255-274). Springer, Cham.
(2020). DOI: 10.1007/978-3-030-45164-6_9.
[45] Gabbar, H.A.: Fast Charging for Marine Transportation.
In Fast Charging and Resilient Transportation
Infrastructures in Smart Cities (pp. 147-163). Springer,
Cham. (2022). DOI: 10.1007/978-3-031-09500-9_9.
[46] Munim, Z.H., Dushenko, M., Jimenez, V.J., Shakil, M.H.
and Imset, M.: Big data and artificial intelligence in the
maritime industry: a bibliometric review and future
research directions. Maritime Policy & Management,
47(5), pp.577-597. (2020). DOI:
https://doi.org/10.1080/03088839.2020.1788731.
[47] Krishnan, S., Balas, V.E., Golden, J., Robinson, Y.H.,
Balaji, S. and Kumar, R. eds.: Handbook of research on
blockchain technology. Academic Press. (2020).
[48] Ramos, M.A., Utne, I.B. and Mosleh, A.: Collision
avoidance on maritime autonomous surface ships:
Operators’ tasks and human failure events. Safety
science, 116, pp.33-44. (2019). DOI:
https://doi.org/10.1016/j.ssci.2019.02.038.
[49] Inal, O.B., Charpentier, J.F. and Deniz, C.: Hybrid power
and propulsion systems for ships: Current status and
future challenges. Renewable and Sustainable Energy
Reviews, 156, p.111965. (2022). DOI:
https://doi.org/10.1016/j.rser.2021.111965.
[50] Thombre, S., Zhao, Z., Ramm-Schmidt, H., García,
J.M.V., Malkamäki, T., Nikolskiy, S., Hammarberg, T.,