843
amplitude response and phase response of integer
and non-integer order. It was found out that the time
response obtained experimentally, coincides with the
response determined by the developed model of non-
integer order of the transducer for the parameter v=1.
This confirms the correctness of the designated model.
Frequency responses obtained experimentally
differ slightly from the responses obtained in
computer simulation. The logarithmic amplitude
response and phase response obtained experimentally
are of the order of the oscillating element for the
parameter v of the interval 0.98<v<1.
In the real system shown in the paper, the pressure
in the transducer chamber was measured at the outlet
of the air into the combustion chamber, where, at the
moment of aspiration of air through the engine, the air
reaches the speed of sound. Such conditions may
account for a slight decrease in the order of the
oscillating element under testing.
The analysis of the logarithmic amplitude response
of the models presented in the paper shows that the
local maximum present in these characteristics is
dependent on the order of the derivative and the
bigger the amplitude, the higher the order of the
derivative. For the parameter v=1 (classical model) the
amplitude reaches the maximum at the resonant
frequency for damping ξ<1. With the decreasing order
of the derivative, the increase in the resonant
frequency of the circuit can be observed.
Fractional calculus is particularly useful in
building dynamic models of mathematical systems
working in conditions that cannot be described with
differential equations of integer orders. This can be
deduced by analyzing systems such as the long
electric line of infinitely large length or the
supercapacitor of a few thousand Farads, which are
now also described with fractional calculus.
REFERENCES
1. Caponetto, R., Dongola, G., Fortuna, L., Petráš, I.:
Fractional Order Systems. World Scientific (2010).
https://doi.org/10.1142/7709.
2. Diethelm, K.: The Analysis of Fractional Differential
Equations: An Application-Oriented Exposition Using
Differential Operators of Caputo Type. Springer-Verlag,
Berlin Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14574-2.
3. Kaczorek, T.: Selected Problems of Fractional Systems
Theory. Springer-Verlag, Berlin Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20502-6.
4. Luft, M., Łukasik, Z., Pietruszczak, D.: Analysis of
dynamic characteristics of selected pneumatic systems
with fractional calculus used in telematics. Archives of
Transport System Telematics. 11, 4, 37–44 (2018).
5. Luft, M., Nowocień, A., Pietruszczak, D.: Analiza
właściwości dynamicznych wybranych układów
pneumatycznych za pomocą rachunku różniczkowego
niecałkowitych rzędów. Cz. 1, Badania symulacyjne.
atest. 18, 12, 1050–1055 (2017).
6. Luft, M., Nowocień, A., Pietruszczak, D.: Analiza
właściwości dynamicznych wybranych układów
pneumatycznych za pomocą rachunku różniczkowego
niecałkowitych rzędów. Cz. 2, Badania laboratoryjne.
atest. 18, 12, 1056–1060 (2017).
7. Luft, M., Nowocień, A., Pietruszczak, D.: Modele
matematyczne kaskady pneumatycznej oraz
membranowego siłownika pneumatycznego opisane
rachunkiem różniczkowym niecałkowitych rzędów.
atest. 19, 12, 526–531 (2018).
https://doi.org/10.24136/atest.2018.444.
8. Luft, M., Nowocień, A., Pietruszczak, D.: Właściwości
dynamiczne wybranych podstawowych członów
automatyki niecałkowitych rzędów. atest. 19, 12, 1056–
1060 (2018). https://doi.org/10.24136/atest.2018.443.
9. Luft, M., Nowocień, A., Pietruszczak, D., Lisak, A.,
Chamela, W.: Frequency response of the pressure
transducer model described by the fractional order
differential equation. TTS. 12, 128–132 (2016).
10. Ostalczyk, P.: Zarys rachunku różniczkowo-całkowego
ułamkowych rzędów : teoria i zastosowania w
automatyce. Wydawnictwo Politechnika Łódzka (2008).
11. Pietruszczak, D.: Laboratory investigations of dynamic
properties of accelerometers with fractional orders for
application in telematic equipment. Archives of
Transport System Telematics. 5, 2, 26–31 (2012).
12. Pietruszczak, D., Luft, M., Lesiak, P.: Some applications
of fractional calculus in modelling of accelerometer and
pressure transducer. Zeszyty Naukowe Wydziału
Elektrotechniki i Automatyki Politechniki Gdańskiej. 47,
(2015).
13. Pietruszczak, D., Nowocień, A.: Description of selected
pneumatic elements and systems using fractional
calculus. jaeee. 1, 1, 43–49 (2019).
https://doi.org/10.24136/jaeee.2019.006.
14. Podlubny, I.: Fractional Differential Equations. An
Introduction to Fractional Derivatives, Fractional
Differential Equations, Some Methods of Their Solution
and Some of Their Applications. Academic Press (1998).
15. Sabatier, J., Agrawal, O.P., Machado, J.A.T. eds:
Advances in Fractional Calculus: Theoretical
Developments and Applications in Physics and
Engineering. Springer Netherlands (2007).
https://doi.org/10.1007/978-1-4020-6042-7.
16. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional
Integrals and Derivatives: Theory and Applications.
CRC Press (1993).