694
38. Miętus, M., Storch, H.: Reconstruction of the wave
climate in the Proper Baltic Basin, April1947 -
March1988. GKSS (Geesthacht). (1997).
39. Miller, J.K., Rella, A., Williams, A., Sproule, E.: Living
Shorelines Engineering Guidelines,
https://www.nj.gov/dep/cmp/docs/living-shorelines-
engineering-guidelines-final.pdf, last accessed
2020/09/02.
40. Ming, D., Chiew, Y.-M.: Shoreline Changes behind
Detached Breakwater. Journal of Waterway, Port,
Coastal, and Ocean Engineering. 126, 2, 63–70 (2000).
https://doi.org/10.1061/(ASCE)0733-950X(2000)126:2(63).
41. Mitsuyasu, H.: Wave Breaking in the Presence of Wind
Drift and Opposed Swell. In: Banner, M.L. and
Grimshaw, R.H.J. (eds.) Breaking Waves. pp. 147–153
Springer Berlin Heidelberg, Berlin, Heidelberg (1992).
42. Mojski, J.E.: Morze Bałtyckie jako część szelfu
północnoeuropejskiego. Landform Analysis. 9, 208–211
(2008).
43. Mojski, J.E., Dadlez, R., Słowańska, B., Uścinowicz, Sz.,
Zachowicz, J.: Atlas geologiczny południowego Bałtyku
- 1:500 000, (1995).
44. Ostrowski, R., Pruszak, Z.: Wybrane aspekty hydro- i
morfodynamiki brzegu południowego Bałtyku w
świetle zjawisk klimatycznych. Inżynieria Morska i
Geotechnika. 5, 668–677 (2015).
45. Otto, J.-C., Smith, M.J.: Geomorphological mapping. In:
Cook, S.J., Clarke, L.E., and Nield, J.M. (eds.)
Geomorphological Techniques (Online Edition). British
Society for Geomorphology, London (2013).
46. Owens, E.H.: Tombolo. In: Schwartz, M. (ed.) Beaches
and Coastal Geology. pp. 838–839 Springer US, New
York, NY (1984). https://doi.org/10.1007/0-387-30843-
1_474.
47. Penney, W.G., Price, A.T., Martin, J.C., Moyce, W.J.,
Penney, W.G., Price, A.T., Thornhill, C.K.: Part I. The
diffraction theory of sea waves and the shelter afforded
by breakwaters. Philosophical Transactions of the Royal
Society of London. Series A, Mathematical and Physical
Sciences. 244, 882, 236–253 (1952).
https://doi.org/10.1098/rsta.1952.0003.
48. Pruszak, Z.: Akweny morskie: zarys procesów
fizycznych i inżynierii środowiska. Wydawnictwo IBW
PAN (2003).
49. Ranasinghe, R., Larson, M., Savioli, J.: Shoreline
response to a single shore-parallel submerged
breakwater. Coastal Engineering. 57, 11, 1006–1017
(2010). https://doi.org/10.1016/j.coastaleng.2010.06.002.
50. Rasmeemasmuang, T., Weesakul, S.: One-line Model
Using the Combination of Polar and Cartesian
Coordinates for Crenulate Shaped Bay. In: Proceedings
of Coastal Dynamics 2009. pp. 1–14 World Scientific
(2009). https://doi.org/10.1142/9789814282475_0063.
51. Rosen, D.S., Vajda, M.: Sedimentological Influences of
Detached Breakwaters. In: Coastal Engineering. pp.
1930–1949 (1982).
https://doi.org/10.1061/9780872623736.116.
52. Schönhofer, J., Szmytkiewicz, M.: Identyfikacja prądów
rozrywających w strefie brzegowej południowego
Bałtyku – modelowanie i obserwacje w naturze.
Inżynieria Morska i Geotechnika. 6, 505–516 (2013).
53. Schwartz, M.L., Granö, O., Pyökäri, M.: Spits and
Tombolos in the Southwest Archipelago of Finland.
Journal of Coastal Research. 5, 3, 443–451 (1989).
54. Seymour, R.J.: Longshore Sediment Transport. In:
Schwartz, M.L. (ed.) Encyclopedia of Coastal Science.
pp. 600–600 Springer Netherlands, Dordrecht (2005).
https://doi.org/10.1007/1-4020-3880-1_199.
55. Shaw, W.S., Goff, J., Brander, R., Walton, T., Roberts, A.,
Sherker, S.: Surviving the surf zone: Towards more
integrated rip current geographies. Applied Geography.
54, 54–62 (2014).
https://doi.org/10.1016/j.apgeog.2014.07.010.
56. Skinner, B.J., Porter, S.C.: The Dynamic Earth: An
Introduction to Physical Geology. Wiley (1995).
57. Specht, C., Dabrowski, P.S., Specht, M.: 3D modelling of
beach topography changes caused by the tombolo
phenomenon using terrestrial laser scanning (TLS) and
unmanned aerial vehicle (UAV) photogrammetry on the
example of the city of Sopot. Geo-Marine Letters. 40, 5,
675–685 (2020). https://doi.org/10.1007/s00367-020-
00665-5.
58. Specht, C., Lewicka, O., Specht, M., Dąbrowski, P.,
Burdziakowski, P.: Methodology for Carrying out
Measurements of the Tombolo Geomorphic Landform
Using Unmanned Aerial and Surface Vehicles near
Sopot Pier, Poland. Journal of Marine Science and
Engineering. 8, 6, (2020).
https://doi.org/10.3390/jmse8060384.
59. Specht, C., Mindykowski, J., Dąbrowski, P., Masnicki,
R., Marchel, Ł., Specht, M.: Metrological aspects of the
Tombolo effect investigation – Polish case study.
Presented at the Proceedings of the 2019 IMEKO TC-19
International Workshop on Metrology for the Sea ,
Genova, Italy October 10 (2019).
60. Specht, M., Specht, C., Lewicka, O., Makar, A.,
Burdziakowski, P., Dąbrowski, P.: Study on the
Coastline Evolution in Sopot (2008–2018) Based on
Landsat Satellite Imagery. Journal of Marine Science and
Engineering. 8, 6, (2020).
https://doi.org/10.3390/jmse8060464.
61. Specht, M., Specht, C., Mindykowski, J., Dąbrowski, P.,
Maśnicki, R., Makar, A.: Geospatial Modeling of the
Tombolo Phenomenon in Sopot using Integrated
Geodetic and Hydrographic Measurement Methods.
Remote Sensing. 12, 4, (2020).
https://doi.org/10.3390/rs12040737.
62. Suh, K.D., Hardaway, C.S.: Calculation of Tombolo in
Shoreline Numerical Model. Presented at the 24th
International Conference on Coastal Engineering , Kobe,
Japan (1994). https://doi.org/10.1061/9780784400890.193.
63. The Institute of Oceanology of the Polish Academy of
Sciences: Performing research and modeling works of
the bottom and the sea shore near the pier in Sopot (in
Polish). (2016).
64. Thurman, H.V., Trujillo, A.P.: Introductory
Oceanography. Merrill Publishing Company (1985).
65. Tombolo od przystani do molo:
https://sopot.gmina.pl/raport-marina-tombolo-2016/, last
accessed 2021/04/01.
66. Urząd Morski w Gdyni: Zasilanie plaży w Gdyni
Orłowie | Urząd Morski w Gdyni – portal informacyjny,
https://www.umgdy.gov.pl/?p=35392, last accessed
2020/09/29.
67. Uścinowicz, S.: Geochemistry Of Baltic Sea Surface
Sediments. Polish Geological Institute-National Research
Institute, Warsaw (2011).
68. Vu, M.T., Lacroix, Y., Nguyen, V.T.: Empirical
Equilibrium Beach Profiles Along the Eastern Tombolo
of Giens. Journal of Marine Science and Application. 17,
2, 241–253 (2018). https://doi.org/10.1007/s11804-018-
0027-3.
69. Wiśniewski, B., Wolski, T.: Physical aspects of extreme
storm surges and falls on the Polish coast: Oceanologia.
53, 1-TI, (2011).
70. Yu, Y.-X., Liu, S.-X., Li, Y.S., Wai, O.W.H.: Refraction
and diffraction of random waves through breakwater.
Ocean Engineering. 27, 5, 489–509 (2000).
https://doi.org/10.1016/S0029-8018(99)00005-0.
71. Zeidler, R.B., Wróblewski, A., Miętus, M., Dziadziuszko,
Z., Cyberski, J.: Wind, Wave, and Storm Surge Regime at
the Polish Baltic Coast. Journal of Coastal Research. 33–
55 (1995).