464
469–478 (2017).
https://doi.org/10.1016/j.eswa.2016.11.005.
27. Lazarowska, A.: Multi-criteria trajectory base path
planning algorithm for a moving object in a
dynamic environment. In: 2017 IEEE International
Conference on INnovations in Intelligent SysTems
and Applications (INISTA). pp. 79–83 (2017).
https://doi.org/10.1109/INISTA.2017.8001136.
28. Lebkowski, A.: Design of an Autonomous
Transport System for Coastal Areas. TransNav, the
International Journal on Marine Navigation and
Safety of Sea Transportation. 12, 1, 117–124 (2018).
https://doi.org/10.12716/1001.12.01.13.
29. Legriel, J.: Multicriteria optimization and its
application to multi-processor embedded systems.
Grenoble University (2011).
30. Lindfield, G., Penny, J.: Numerical Methods: Using
MATLAB. Academic Press (2012).
31. Lisowski, J.: Game Control Methods Comparison
when Avoiding Collisions with Multiple Objects
Using Radar Remote Sensing. Remote Sensing. 12,
10, (2020). https://doi.org/10.3390/rs12101573.
32. Lisowski, J.: The Optimal and Safe Ship
Trajectories for Different Forms of Neural State
Constraints. Solid State Phenomena. 180, 64–69
(2012).
https://doi.org/10.4028/www.scientific.net/SSP.180.
64.
33. Lisowski, J., Mohamed-Seghir, M.: Comparison of
Computational Intelligence Methods Based on
Fuzzy Sets and Game Theory in the Synthesis of
Safe Ship Control Based on Information from a
Radar ARPA System. Remote Sensing. 11, 1, (2019).
https://doi.org/10.3390/rs11010082.
34. Maniowski, M.: Multi-criteria optimization of
chassis parameters of Nissan 200 SX for drifting
competitions. IOP Conference Series: Materials
Science and Engineering. 148, 012019 (2016).
https://doi.org/10.1088/1757-899x/148/1/012019.
35. Marler, R.T., Arora, J.S.: Survey of multi-objective
optimization methods for engineering. Structural
and Multidisciplinary Optimization. 26, 6, 369–395
(2004). https://doi.org/10.1007/s00158-003-0368-6.
36. Marler, R.T., Arora, J.S.: The weighted sum method
for multi-objective optimization: new insights.
Structural and Multidisciplinary Optimization. 41,
6, 853–862 (2010). https://doi.org/10.1007/s00158-
009-0460-7.
37. Messac, A., Mattson, C.A.: Generating Well-
Distributed Sets of Pareto Points for Engineering
Design Using Physical Programming.
Optimization and Engineering. 3, 4, 431–450
(2002). https://doi.org/10.1023/A:1021179727569.
38. Messac, A., Puemi-Sukam, C., Melachrinoudis, E.:
Aggregate Objective Functions and Pareto
Frontiers: Required Relationships and Practical
Implications. Optimization and Engineering. 1, 2,
171–188 (2000).
https://doi.org/10.1023/A:1010035730904.
39. Miller, A., Rybczak, M., Rak, A.: Towards the
Autonomy: Control Systems for the Ship in
Confined and Open Waters. Sensors. 21, 7, (2021).
https://doi.org/10.3390/s21072286.
40. Odu, G.O., Charles-Owaba, O.E.: Review of Multi-
criteria Optimization Methods – Theory and
Applications. IOSR Journal of Engineering. 3, 10,
01–14 (2013). https://doi.org/10.9790/3021-
031020114.
41. Paulovičová, L.: Multi-Criteria Optimization and
its Application to Earthwork Processes. Advanced
Materials Research. 1020, 883–887 (2014).
https://doi.org/10.4028/www.scientific.net/AMR.10
20.883.
42. Płonka, S.: Wielokryterialna optymalizacja
procesów wytwarzania części maszyn.
Wydawnictwo Naukowe PWN, Warszawa (2017).
43. Pohekar, S.D., Ramachandran, M.: Application of
multi-criteria decision making to sustainable
energy planning—A review. Renewable and
Sustainable Energy Reviews. 8, 4, 365–381 (2004).
https://doi.org/10.1016/j.rser.2003.12.007.
44. Rawls, J.: A Theory of Justice. Belknap Press (1971).
45. Romero, C.: Multi-Objective and Goal-
Programming Approaches as a Distance Function
Model. null. 36, 3, 249–251 (1985).
https://doi.org/10.1057/jors.1985.43.
46. Romero, C., Tamiz, M., Jones, D.F.: Goal
programming, compromise programming and
reference point method formulations: linkages and
utility interpretations. Journal of the Operational
Research Society. 49, 9, 986–991 (1998).
https://doi.org/10.1057/palgrave.jors.2600611.
47. Roy, B.: Wielokryterialne wspomaganie decyzji.
WNT, Warszawa (1990).
48. Salukvadze, M.E., Trishkin, V.Ya.: Optimization of
vector functionals II. The analysis construction of
optimal controls. Automation and Remote Control.
32, 1347–1357 (1971).
49. Stadler, W.: A survey of multicriteria optimization
or the vector maximum problem, part I: 1776–1960.
Journal of Optimization Theory and Applications.
29, 1, 1–52 (1979).
https://doi.org/10.1007/BF00932634.
50. Stadler, W. ed: Multicriteria Optimization in
Engineering and in the Sciences. Springer US
(1988). https://doi.org/10.1007/978-1-4899-3734-6.
51. Stateczny, A., Burdziakowski, P.: Universal
Autonomous Control and Management System for
Multipurpose Unmanned Surface Vessel. Polish
Maritime Research. 26, 1, 30–39 (2019).
https://doi.org/10.2478/pomr-2019-0004.
52. Steuer, R.E.: Multiple Criteria Optimization:
Theory, Computation, and Application. Wiley
(1986).
53. Swain, S.C., Panda, S., Mahapatra, S.: A multi-
criteria optimization technique for SSSC based
power oscillation damping controller design. Ain
Shams Engineering Journal. 7, 2, 553–565 (2016).
https://doi.org/10.1016/j.asej.2015.05.017.
54. Szlapczynski, R., Szlapczynska, J.: An analysis of
domain-based ship collision risk parameters.
Ocean Engineering. 126, 47–56 (2016).
https://doi.org/10.1016/j.oceaneng.2016.08.030.
55. Tahvili, S.: Multi-Criteria Optimization of System
Integration Testing. Mälardalen University (2018).
56. Tamiz, M., Jones, D., Romero, C.: Goal
programming for decision making: An overview of
the current state-of-the-art. European Journal of
Operational Research. 111, 3, 569–581 (1998).
https://doi.org/10.1016/S0377-2217(97)00317-2.
57. Tomera, M.: A multivariable low speed controller
for a ship autopilot with experimental results. In:
2015 20th International Conference on Methods
and Models in Automation and Robotics (MMAR).
pp. 17–22 (2015).
https://doi.org/10.1109/MMAR.2015.7283699.
58. Wierzbicki, A.P.: On the completeness and
constructiveness of parametric characterizations to
vector optimization problems. Operations-
Research-Spektrum. 8, 2, 73–87 (1986).
https://doi.org/10.1007/BF01719738.
59. Wierzbicki, A.P.: The problem of objective ranking:
foundations, approaches and applications. Journal
of Telecommunications and Information
Technology. 3, 15–23 (2008).