444
29, 335, 166–170 (1982). https://doi.org/10.3233/ISP-1982-
2933501.
11. Hornik, K., Stinchcombe, M., White, H.: Multilayer
feedforward networks are universal approximators.
Neural Networks. 2, 5, 359–366 (1989).
https://doi.org/10.1016/0893-6080(89)90020-8.
12. Isherwood, R.M.: Wind resistance of merchant ships.
The Royal Institution of Naval Architects, RINA, St.
Albans (1973).
13. Kee, K.-K., Simon, B.-Y.L., Renco, K.-H.Y.: Artificial
neural network back-propagation based decision
support system for ship fuel consumption prediction. In:
IET Conference Proceedings. p. 13 Institution of
Engineering and Technology, Kuala Lumpur, Malaysia
(2018).
14. Kristensen, H.O., Lützen, M.: Prediction of Resistance
and Propulsion Power of Ships. (2013).
15. Leshno, M., Lin, V.Ya., Pinkus, A., Schocken, S.:
Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function.
Neural Networks. 6, 6, 861–867 (1993).
https://doi.org/10.1016/S0893-6080(05)80131-5.
16. Liu, S., Papanikolaou, A.: Regression analysis of
experimental data for added resistance in waves of
arbitrary heading and development of a semi-empirical
formula. Ocean Engineering. 206, (2020).
https://doi.org/10.1016/j.oceaneng.2020.107357.
17. Moreira, L., Soares, C.G.: Neural network model for
estimation of hull bending moment and shear force of
ships in waves. Ocean Engineering. 206, 107347 (2020).
https://doi.org/10.1016/j.oceaneng.2020.107347.
18. Moreira, L., Vettor, R., Guedes Soares, C.: Neural
Network Approach for Predicting Ship Speed and Fuel
Consumption. Journal of Marine Science and
Engineering. 9, 2, (2021).
https://doi.org/10.3390/jmse9020119.
19. Neocleous, C.C., Schizas, C.N.: Artificial neural
networks in marine propeller design. In: Proceedings of
ICNN’95 - International Conference on Neural
Networks. pp. 1098–1102 vol.2 , Perth, WA, Australia
(1995). https://doi.org/10.1109/ICNN.1995.487575.
20. Oskin, D.A., Dyda, A.A., Markin, V.E.: Neural Network
Identification of Marine Ship Dynamics. IFAC
Proceedings Volumes. 46, 33, 191–196 (2013).
https://doi.org/10.3182/20130918-4-JP-3022.00018.
21. Petersson, E.: Study of semi-empirical methods for ship
resistance calculations. Independent thesis Advanced
level (professional degree), Uppsala University (2020).
22. Ray, T., Gokarn, R.P., Sha, O.P.: Neural network
applications in naval architecture and marine
engineering. Artificial Intelligence in Engineering. 10, 3,
213–226 (1996). https://doi.org/10.1016/0954-
1810(95)00030-5.
23. Söding, H., Shigunov, V.: Added resistance of ships in
waves. null. 62, 1, 2–13 (2015).
https://doi.org/10.1179/0937725515Z.0000000001.
24. Tadros, M., Ventura, M., Soares, C.G.: Simulation of the
performance of marine genset based on double-Wiebe
function. In: Georgiev, P. and Soares, C.G. (eds.)
Sustainable Development and Innovations in Marine
Technologies. pp. 292–299 CRC Press, London, UK
(2019). https://doi.org/10.1201/9780367810085-38.
25. Tadros, M., Vettor, R., Ventura, M., Guedes Soares, C.:
Coupled Engine-Propeller Selection Procedure to
Minimize Fuel Consumption at a Specified Speed.
Journal of Marine Science and Engineering. 9, 1, (2021).
https://doi.org/10.3390/jmse9010059.
26. Tarelko, W., Rudzki, K.: Applying artificial neural
networks for modelling ship speed and fuel
consumption. Neural Computing and Applications. 32,
23, 17379–17395 (2020). https://doi.org/10.1007/s00521-
020-05111-2.
27. Taskar, B., Yum, K.K., Steen, S., Pedersen, E.: The effect
of waves on engine-propeller dynamics and propulsion
performance of ships. Ocean Engineering. 122, 262–277
(2016). https://doi.org/10.1016/j.oceaneng.2016.06.034.
28. Vettor, R., Prpić-Oršić, J., Guedes Soares, C.: Impact of
wind loads on long-term fuel consumption and
emissions in trans-oceanic shipping. Brodogradnja :
Teorija i praksa brodogradnje i pomorske tehnike. 69, 4,
15–28 (2018). https://doi.org/10.21278/brod69402.
29. Vettor, R., Szlapczynska, J., Szlapczynski, R., Tycholiz,
W., Soares, C.G.: Towards Improving Optimised Ship
Weather Routing. Polish Maritime Research. 27, 1, 60–69
(2020). https://doi.org/10.2478/pomr-2020-0007.
30. Vettor, R., Tadros, M., Ventura, M., Soares, C.G.:
Influence of main engine control strategies on fuel
consumption and emissions. In: Soares, C.G. and Santos,
T.A. (eds.) Progress in Maritime Technology and
Engineering. pp. 157–163 CRC Press, London, UK
(2018). https://doi.org/10.1201/9780429505294-19.
31. Yaakob, O., Ahmed, Y.M., Rashid, M.F.A., Elbatran,
A.H.: Determining Ship Resistance Using
Computational Fluid Dynamics (CFD). JTSE. 2, 1, 20–25
(2015).