873
[8] S.-D. Lee, C.-Y. Tzeng, and W.-W. Huang, “Ship
Steering Autopilot Based on ANFIS Framework and
Conditional Tuning Scheme,” Mar. Eng. Front., 2013.
[9] L. Moreira and C. Guedes Soares, “Recursive neural
network model of catamaran manoeuvring,” Trans. R.
Inst. Nav. Archit. Part A Int. J. Marit. Eng., 2012, doi:
10.3940/rina.ijme.2012.a3.232.
[10] W. Naeem, S. C. Henrique, and L. Hu, “A Reactive
COLREGs-Compliant Navigation Strategy for
Autonomous Maritime Navigation,” IFAC-
PapersOnLine, 2016, doi: 10.1016/j.ifacol.2016.10.344.
[11] M. Kurowski, H. Korte, and B. P. Lampe, “AGaPaS -
A new approach for search-and-rescue-operations at
sea,” in IFAC Proceedings Volumes (IFAC-PapersOnline),
2012, doi: 10.3182/20120919-3-IT-2046.00013.
[12] M. Kurowski and B. P. Lampe, “AGaPaS: A new
approach for search-and-rescue-operations at sea,” Proc.
Inst. Mech. Eng. Part M J. Eng. Marit. Environ., 2014, doi:
10.1177/1475090213504392.
[13] Q. Zhang, N. Jiang, Y. Hu, and D. Pan, “Design of
Course-Keeping Controller for a Ship Based on
Backstepping and Neural Networks,” Int. J. e-Navigation
Marit. Econ., 2017, doi: 10.1016/j.enavi.2017.06.004.
[14] Y. Wang, S. Chai, and H. D. Nguyen, “Experimental
and numerical study of autopilot using Extended
Kalman Filter trained neural networks for surface
vessels,” Int. J. Nav. Archit. Ocean Eng., 2020, doi:
10.1016/j.ijnaoe.2019.11.004.
[15] M. C. Tsou and C. K. Hsueh, “The study of ship
collision avoidance route planning by ant colony
algorithm,” J. Mar. Sci. Technol., 2010.
[16] Y. A. Ahmed and K. Hasegawa, “Automatic ship
berthing using artificial neural network based on virtual
window concept in wind condition,” in IFAC
Proceedings Volumes (IFAC-PapersOnline), 2012, doi:
10.3182/20120912-3-BG-2031.00059.
[17] K. Hasegawa, “From Ship manoeuvrability,
controllability, captain’s model, traffic model to accident
and tsunami analysis,” in International Workshop on
Nautical Traffic Models, 2013.
[18] Y. A. Ahmed and K. Hasegawa, “Consistently
Trained Artificial Neural Network for Automatic Ship
Berthing Control,” TransNav, Int. J. Mar. Navig. Saf. Sea
Transp., 2015, doi: 10.12716/1001.09.03.15.
[19] M. Łącki, “Reinforcement Learning in Ship
Handling,” TransNav Int. J. Mar. Navig. Saf. Sea
Transp., 2008.
[20] M. Ła̧cki, “Speciation of population in
neuroevolutionary ship handling,” in Marine Navigation
and Safety of Sea Transportation, 2009.
[21] M. Łącki, “Neuroevolutionary Ship Maneuvering
Prediction System,” in Information, Communication and
Environment, 2015.
[22] V. L. Tran and N. Im, “A study on ship automatic
berthing with assistance of auxiliary devices,” Int. J.
Nav. Archit. Ocean Eng., 2012, doi:
10.3744/JNAOE.2012.4.3.199.
[23] M. Łącki, “Neuroevolutionary approach to colregs
ship maneuvers,” TransNav, 2019, doi:
10.12716/1001.13.04.06.
[24] M. Lacki, “Indirect Encoding in Neuroevolutionary
Ship Handling,” TransNav, Int. J. Mar. Navig. Saf. Sea
Transp., 2018, doi: 10.12716/1001.12.01.07.
[25] M. Łącki, “Ship course-keeping with
neuroevolutionary algorithms,” Zesz. Nauk. Akad.
Morskiej w Szczecinie, 2018, doi: 10.17402/287.
[26] C. Chen, X. Q. Chen, F. Ma, X. J. Zeng, and J. Wang,
“A knowledge-free path planning approach for smart
ships based on reinforcement learning,” Ocean Eng.,
2019, doi: 10.1016/j.oceaneng.2019.106299.
[27] A. Lazarowska, “Research on algorithms for
autonomous navigation of ships,” WMU J. Marit. Aff.,
2019, doi: 10.1007/s13437-019-00172-0.
[28] D. Looije and Y. Koldenhof, “Unmanned ship
simulation with real-time dynamic risk index,” Zesz.
Nauk. Akad. Morskiej w Szczecinie, 2015.
[29] D. A. Oskin, A. A. Dyda, and V. E. Markin, “Neural
network identification of marine ship dynamics,” in
IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, doi:
10.3182/20130918-4-JP-3022.00018.
[30] B. Liu, S. Z. Wang, Z. X. Xie, J. S. Zhao, and M. F. Li,
“Ship recognition and tracking system for intelligent
ship based on deep learning framework,” TransNav,
2019, doi: 10.12716/1001.13.04.01.
[31] Y. Xue, D. Clelland, B. S. Lee, and D. Han,
“Automatic simulation of ship navigation,” Ocean Eng.,
2011, doi: 10.1016/j.oceaneng.2011.10.011.
[32] R. Skulstad, G. Li, H. Zhang, and T. I. Fossen, “A
Neural Network Approach to Control Allocation of
Ships for Dynamic Positioning,” IFAC-PapersOnLine,
2018, doi: 10.1016/j.ifacol.2018.09.481.
[33] L. P. Perera, “Autonomous ship navigation under
deep learning and the challenges in colregs,” in
Proceedings of the International Conference on Offshore
Mechanics and Arctic Engineering - OMAE, 2018, doi:
10.1115/OMAE2018-77672.
[34] T. Statheros, G. Howells, and K. McDonald-Maier,
“Autonomous ship collision avoidance navigation
concepts, technologies and techniques,” J. Navig., 2008,
doi: 10.1017/S037346330700447X.
[35] Y. Cheng and W. Zhang, “Concise deep
reinforcement learning obstacle avoidance for
underactuated unmanned marine vessels,”
Neurocomputing, 2018, doi:
10.1016/j.neucom.2017.06.066.
[36] A. I. Kozynchenko and S. A. Kozynchenko,
“Applying the dynamic predictive guidance to ship
collision avoidance: Crossing case study simulation,”
Ocean Eng., 2018, doi: 10.1016/j.oceaneng.2018.07.012.
[37] X. D. Cheng, Z. Y. Liu, and X. T. Zhang, “Trajectory
optimization for ship collision avoidance system using
genetic algorithm,” in OCEANS 2006 - Asia Pacific, 2006,
doi: 10.1109/OCEANSAP.2006.4393976.
[38] J. D. Schaffer, D. Whitley, and L. J. Eshelman,
“Combinations of genetic algorithms and neural
networks: A survey of the state of the art,” in COGANN
1992 - International Workshop on Combinations of Genetic
Algorithms and Neural Networks, 1992, doi:
10.1109/COGANN.1992.273950.
[39] X. Yao, “Evolving artificial neural networks,” Proc.
IEEE, 1999, doi: 10.1109/5.784219.
[40] D. Floreano, P. Dürr, and C. Mattiussi,
“Neuroevolution: From architectures to learning,”
Evolutionary Intelligence. 2008, doi: 10.1007/s12065-007-
0002-4.
[41] L. Harris, “Unmanned Marine Systems - ASVs, USVs
& Autonomous Boat Control System,” 2020. [Online].
Available:
https://www.unmannedsystemstechnology.com/compa
ny/autonomous-surface-vehicles-ltd/.
[42] A. Rescec, “Dynamic Water Physics 2,” Unity Assets
Store, 2020. [Online]. Available:
https://assetstore.unity.com/packages/tools/physics/dyn
amic-water-physics-2-147990.