497
simpledefinitionofthetask,unlikethesolution.The
problems concerning LNG distribution methods are
therulesthatassumeNP‐completeproblemsthatcan
beeasilyformulated,buttheoptimalsolutionforthe
given problem is very difficult. The presented
methods efficiently analyze the area of solutions for
the problem
considered. Above all, their purpose is
the solution of optimization tasks. Their particular
usefulness is demonstrated in the solution of
problems of combinatorial nature. Finding the
optimal outcome for a great number of points is a
hard and work‐consuming task. Genetic algorithms
areanalternativeforthemethodscommonly
usedso
far.
ACKNOWLEDGEMENTS
Thisresearchoutcome hasbeen achieved under grantNo.
S/1/CIRM/2016,financedfromasubsidyoftheMinistryof
ScienceandHigherEducationforstatutoryactivities.
REFERENCES
[1]Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A
fastandelitistmultiobjectivegeneticalgorithm:NSGA‐
II,IEEETransactionsonEvolutionaryComputation6(2)
(2002)182‐197.
[2]Fonseca C.M, Fleming P.J.: Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion
and Generalization. In Stephanie Forrest, editor,
Proceedings of the Fifth International
Conference on
Genetic Algorithms, pages 416–423, San Mateo,
California, 1993. University of Illinois at Urbana‐
Champaign,MorganKauffmanPublishers.
[3]Goldberg D. E., Algorytmy genetyczne i ich
zastosowanie.Warszawa:WNT,2003.
[4]Gucma M., Bąk A., Chłopińska E.: Concept of LNG
transferandbunkeringmodelofvessels
atSouthBaltic
SeaArena.AnnualofNavigation25/2018,pages79‐91.
[5]Holland, J.H., Adaptation in Natural and Artificial
Systems,UniversityofMichiganPress,AnnArbor,1975.
[6]Horn, J., Nafpliotis, N., and Goldberg, D.E. A niched
Paretogeneticalgorithmformultiobjectiveoptimization.
in Proceedings of the First IEEE Conference
on
Evolutionary Computation. IEEE World Congress on
ComputationalIntelligence,27‐29June1994.
[7]Knowles, J.D. and Corne, D.W., Approximating the
nondominatedfrontusingtheParetoarchivedevolution
strategy,EvolutionaryComputation8(2)149‐172.
[8]Koza J. R., Rice J. P., i Roughgarden J., „Evolution of
food foraging strategies for
the Caribbean Anolis lizard
usinggeneticprogramming.”,AdaptiveBehavior.,t.1,nr2,
ss.47–74,1992.
[9]Lu,H.andYen,G.G.,Rank‐density‐basedmultiobjective
genetic algorithm and benchmark test function study,
IEEE Transactions on Evolutionary Computation 7(4)
(2003)325‐343.
[10]Michalewicz Z., Algorytmy genetyczne + struktury
danych =
programy ewolucyjne. Warszawa:
WydawnictwoNaukowo‐Techniczne,1999.
[11]Migawa K.: Method for control of technical objects
operationprocesswiththeuseofsemi‐Markovdecision
processes,JournalofKONESPowertrainandTransport.,
t.19,nr4,2012.
[12]MitchellM., Anintroductionto genetic algorithms., 1.
wyd.Cambridge:MITPress,
1996.
[13]Mitsuo G., Runwei Ch.: Genetic algorithms and
engineeringoptimization.JohnWiley&Sons,inc.New
York,2000.
[14]Murata, T. and Ishibuchi, H. MOGA: multi‐objective
genetic algorithms. in Proceedings of 1995 IEEE
InternationalConferenceonEvolutionaryComputation,
29Nov.‐1Dec.1995.
[15]Sarker, R., Liang, K.‐H.,
and Newton, C., A new
multiobjectiveevolutionaryalgorithm,EuropeanJournal
ofOperationalResearch140(1)(2002)12‐23.
[16]Schaffer, J.D. Multiple Objective optimization with
vector evaluated genetic algorithms. in International
ConferenceonGeneticAlgorithmandtheirapplications.
1985.
[17]Srinivas, N. and Deb, K., Multiobjective Optimization
Using Nondominated Sorting in
Genetic Algorithms,
Journal of Evolutionary Computation 2(3) (1994) 221‐
248.
[18]Tutorial A., Konak A., Coit D.W., Smith A.E.: Multi‐
Objective Optimization Using Genetic Algorithms: A
tutorial. Reliability Engineering and System Safety 91
(2006),s.992–1007.
[19]Zitzler, E. and Thiele, L., Multiobjective evolutionary
algorithms: a comparative case study and
the strength
Pareto approach, IEEE Transactions on Evolutionary
Computation3(4)(1999)257‐271.
[20]Dyrektywa Parlamentu Europejskiego i Rady
2012/33/UE