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1 INTRODUCTION 

The maritime sector is characterized by an increasing 
amount of digitisation and automation. Automation 
of onboard systems plays an increasingly relevant role 
in the provision of safe operation which is marked by 
the growing development of autonomous navigation 
solutions [1]. These solutions can be beneficial to 
analyse situations proactively and react quickly, 
leading to an increase in the overall safety of 
navigation operations. Furthermore, digitisation and 
automation play an essential role in the development 
of MASS. The underlying systems are realised 

through different techniques which can follow simple 
rule-based approaches up to more complex ML-based 
techniques. 

In this context, AI-based systems (hereinafter 
called systems) are noteworthy due to their promising 
capabilities. However, to support the 
conceptualization, development and implementation 
of these systems and further enable their verification, 
processes in the maritime regulatory bodies and 
auditing authorities have to be adapted. The challenge 
in understanding these systems is their technical 
structure due to which some systems and their 
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behaviours can be considered a black box, hence not 
transparent or explainable [2], [3]. 

The present article summarizes the study VerifAI 
which has been carried out by the German Federal 
Maritime and Hydrographic Agency and the 
Fraunhofer Center for Maritime Logistics, i.e. the 
authors of the present article. In this study the authors 
present the current regulatory status in Europe and, 
more specifically, Germany. Available and imminent 
AI-based MASS-related products (hereinafter called 
products) are investigated as part of a market study. It 
is outlined how current audit processes do not cover 
these systems, and how the introduction of feasible, 
scalable and robust audit processes faces a number of 
challenges: 
− Generalization of the operational domain of the 

systems 
− Data quality management in the development and 

data procurement during audit processes 
− Increasing variety of complex and novel system 

architectures 

To mitigate this gap, the authors developed a 
conceptual and integrated process framework which 
consists of a Safety Guideline for the manufacturer 
and a Verification Guideline for the auditing 
authority. The framework follows a model-agnostic 
approach to cover the wide variety of available and 
imminent AI-based systems. The focus of the 
framework lies in answering the question of 
“whether” and not “how” a system is functioning. 

The present article is structured as follows: In 
Chapter 2 related work is presented and compared to 
the present article. Subsequently, in Chapter 3 the 
current regulatory status and market situation are 
summarized and eventually the gap between these 
two is demonstrated. A proposal on how to close this 
gap is presented in Chapter 4. The proposed 
framework can be seen as the novel and main 
contribution of this article. Subsequently, in Chapter 5 
recommendations for actions for regulatory bodies 
and auditing authorities are derived. The article closes 
with the conclusion (cf. Chapter 6) and future work 
(cf. Chapter 7). 

2 RELATED WORK 

Progress in the field of MASS audit, more precisely 
testing and verification, can be divided into two parts: 
firstly, identifying relevant regulatory processes to 
audit marine equipment and, secondly, looking at 
state-of-the-art techniques on making the behaviour of 
such systems auditable. 

Research in the regulatory field was constrained to 
the European Union (EU) as the scope of the 
investigation is a framework with the aim to be 
compatible with the existing audit framework in 
Europe. The current state of regulations on marine 
equipment is mainly defined in the Maritime 
Equipment Directive (MED) [4] outlining relevant 
standards applicable to pre-defined types of 
equipment. The considered AI-based systems are not 
referred. Therefore, it is not possible to evaluate the 
applicability of current regulations for the audit of 
MASS. Future standardisations could be derived from 

imminent regulations such as the Artificial 
Intelligence Act (AI Act) of the EU [5]. However, 
neither a timeline nor a precise scope can be clarified, 
by now. 

Technical research in the field of audit of MASS is 
also limited due to the novelty of the underlying 
products or systems. Early developments of a 
framework can be seen in the work of Rokseth et al. 
who describe a methodological approach to assess the 
overall safety of an autonomous system in the 
maritime domain [6]. This approach can be primarily 
applied for the risk assessment of a system but gives 
no indication of regulatory conformity or methods to 
be considered. 

The approach of Ringbom [7] associates regulatory 
methods to the level of autonomy as outlined by the 
International Maritime Organization (IMO) in [8] and 
illustrates the main challenges of the missing 
formalization. This perception coincides with the 
challenges identified by the authors of the present 
article. The focus of the present article is on level 1 
and 4 systems according to IMO. Remotely operated 
systems are explicitly not evaluated. Finally, Ringbom 
seeks to clarify some of the key features and 
terminology related to automation in shipping as well 
as to illustrate how the different concepts are 
interconnected. A proposed framework for 
distinguishing the key elements involved in the 
regulation of autonomous ships is outlined. The 
regulatory challenge is assessed through an 
examination of specific legal hurdles and past practice 
of the IMO in regulating automation in shipping, with 
a particular focus on bridge operations. It states that a 
solid regulatory framework for autonomous shipping 
operations should be able to deal with variations and 
should not be limited to a specified level of manning 
or autonomy. 

3 STATUS QUO 

The current situation of both, the regulatory status 
and the market situation, indicate that AI-based 
systems are not considered, yet. More precisely 
current regulatory processes do not cover black box-
like systems whose behaviour is not explicitly 
explainable. 

A prominent example for a black box model is a 
neural network. A neural network consists of layers of 
nodes where each node represents some form of 
function and is highly interconnected with other 
nodes. Such a model’s behaviour is not readily 
transparent nor explainable and its audit is not 
covered by current regulatory processes. 

This gap between the regulatory status and the 
market situation is outlined in the following 
subchapters. 

3.1 Regulatory status 

According to the International Convention for the 
Safety of Life at Sea (SOLAS) [9], the market 
introduction of a novel equipment for a ship requires 
testing and verification of its manufacturing process, 
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functionality and operation on board the ship. In 
particular, when equipment is approved with the aim 
of autonomising processes on seagoing ships, 
comprehensive testing is necessary to ensure the 
operational safety. 

The verification of the safety of marine equipment 
in the EU is carried out in accordance with the MED 
by means of a conformity assessment procedure by 
notified bodies. Notified bodies are institutions 
accredited by national authorities which are 
mandated to carry out verification procedures. The 
process of ensuring the conformity of a product to be 
placed on the European market takes place in terms of 
its design, construction and performance. The EU 
outlines the conformity assessment process with its 
possible testing modules and options under the 
Marine Equipment Regulation [4] 

The European AI Act, which is currently being 
drafted, will have a significant influence on the 
development of AI-based systems. However, 
according to Article 2, only Article 84 (evaluation and 
review) will apply to safety-critical AI-based systems 
that fall within the scope of the MED. In accordance 
with Article 78 of the AI Act, in order to meet the 
requirements the MED shall be amended [5]. 

3.2 Market situation 

As already shown in the review of the regulatory 
status, currently, there is no suitable procedure for the 
audit of AI-based systems. Therefore, the safety of 
these systems is in the hands of their manufactures. 
Obviously, manufacturers do not disclose sensible 
information about their systems as this could lead to 
competitive disadvantage. 

 
Figure 1. Published patents accessible with the combined 
search term “ship” and “autonomous” via Google 
Patents [10]. 

This lack for comprehensibility of the systems 
proper functioning is continuously becoming more 
serious as the diversity, technical maturity and also 
the number of AI-based systems advances. The 
increasing number of autonomous systems brought to 
market can be shown by the growth of international 
patent applications in the MASS sector. Figure 1 
depicts this growth in patent applications published 
annually from 2000 to 2022 for the combined search 
term “ship” and “autonomous”. The clearly visible 
trend may be an indication that the number of AI-

enabled products entering the market each year will 
continue to increase. With reference to the lack of 
regulatory procedures or auditing processes identified 
in Chapter 3.1, there is a need to establish appropriate 
testing and certification processes. 

To gain an understanding of the product or system 
types which are not covered by existing audit 
processes, a market study was carried out within the 
VerifAI study with a focus on available systems or 
those close to market readiness. In total 18 systems 
were identified and subsequently categorized 
according to their field of application and sensors 
used as data sources. The resulting tabular overview 
can be found in the upcoming full-text study. The 
results from the market study show that frequently 
used sensors like Radar  [11] and Automatic 
Identification System (AIS)  [12] do follow existing 
information exchange standards. By contrast, every 
identified system relied on camera systems from the 
visible red, green, blue (RGB) range, despite any 
standards. In particular, the use of camera systems, be 
it RGB, infrared or other ranges, and subsequent AI-
based processing poses hurdles due to a lack of 
standards in the maritime context. Consequently, 
audit processes for such AI-based systems cannot be 
standardised and the audit takes additional effort 
compared to systems with standardised information 
exchanges. 

4 CONCEPTUAL FRAMEWORK 

In this chapter, our framework is presented which 
supports at closing the gap between the illustrated 
regulatory status and market situation. The proposed 
approach consists of two guidelines: 
− Safety Guideline for the manufacturer. 
− Verification Guideline for the auditing authority. 

 
Figure 2. Concept of the Safety Guideline based on three 
process stages: Formalisation, Regulations and Data & Model. 
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The integration of both guidelines makes sure that 
through its life cycle the AI-based system meets audit-
facilitating requirements. Thus, the two goals of the 
Safety Guideline (cf. Figure 2) are: 1) ensure the 
auditability of the (black box-like) AI-based system 
and 2) the development of a sufficiently safe system 
with chance of successful verification. It is 
recommended that the manufacturer takes the Safety 
Guideline into account early in the life cycle, i.e. in the 
concept phase. 

The Verification Guideline (cf. Figure 3) is directed 
at the auditing authority. It follows two goals: 1) audit 
of proper functions in terms of information 
technology and safety 2) a robust certification process. 

The manufacturer prepares the audit by providing 
the following content to the auditing authority: 
− AI-based system which is modularised into 

(AI-based) components 
− functional description of each component 
− input and output description of each component 

The above-mentioned content is provided by the 
manufacturer as part of the audit. Both technical 
descriptions are based on the concepts of Input-
Process-Output (IPO) patterns and having a well-
defined Operational Design Domain (ODD) 
(cf. Chapters 4.1 and 4.2) 

4.1 Concept of a Verification Guideline 

The first process stage Preliminary Audit consists of 
four processes. Initially, it must be verified that the 
present system, conform the criteria of being an 
AI-based system. This implies that, on one hand, there 
is a clear definition of AI in the audit context, and on 
the other hand, that at least one component of the 
system conforms this definition. Next, the auditing 
authority has to make sure, that the present system is 
sufficiently modularised into components for the 
audit. Based on IPO patterns, this is the case when the 
description of the present system components 
behaviours cover and associate all inputs with their 
corresponding outputs. As a result, it is clear to the 
auditing authority which system components must be 
audited and how each of them functions according to 
the IPO pattern. For this purpose, concepts as 
suggested by Burmeister et al. can be adduced [13]. 
Subsequently, the ODD of each system component is 
checked for completeness. It is considered complete 
when the ODD of each component clearly defines its 
boundaries, the range of input and output values and 
which input values have been applied during the 
development. Even though aiming at automotive 
industry, a conceivable framework for the 
formalization of ODD is presented by Gyllenhammar 
et al. [14]. This framework is extended by Rødseth et 
al. specifically towards autonomous ship systems [15]. 
As a result, for each component, it must be clear 
which output is expected for which input. In the last 
process step of the Preliminary Audit stage, the 
provided audit metrics and success criteria are 
checked. The provided audit metrics must enable the 
auditing authority to measure the functioning of each 
component based on how the output values meet the 
expectations given for test input values. 
Corresponding success criteria enable the evaluation 
of success by indicating how close the output values 

meet the actual expectations. A component is 
functioning properly when it complies with the 
success criteria. As mentioned before the proposed 
framework follows a model-agnostic approach. 
Applied to the Preliminary Audit this means, that the 
auditing authority must be enabled to answer 
“whether” a present system is functioning properly 
and not “how” it internally does. 

 
Figure 3. Concept of the Verification Guideline based on 
three process stages: Preliminary Audit, Main Audit and Re-
Audit. 

When the audit framework has been checked 
successively in Preliminary Audit, the Main Audit 
follows (cf. Figure 3). In the first process step, the 
auditing authority has to make sure that the AI-based 
system complies with applicable regulations for 
example acts, such as the forthcoming AI Act [5], or 
norms, such as the National Marine Electronics 
Association (NMEA) 0183 standard [16]. In the 
subsequent process step, the auditing authority 
procures test data for the audit. Due to the technical 
description of the input values description which is 
delivered by the manufacturer (cf. Chapter 4) the 
auditing authority should be able to procure 
appropriate data. Data procurement can be based on 
the acquisition or recording of real data, augmenting 
existing data or generating synthetic data. It is 
important to note that it must be ensured not to use 
test data which has been already used by the 
manufacturer during the development, i.e. training, of 
the model. Otherwise, results will be distorted for the 
benefit of the AI-based system. A conceivable solution 
to this problem may be situational synthetic data 
generation [17], [18], [19]. These approaches are also 
being progressively developed for image data as it is 
known to the broad public in case of DALL-E 2 [20] 
and Stable Diffusion [21]. When an appropriate dataset 
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is available, the actual audit process follows. Now, 
data can be applied to the AI-based system 
components. Due to the technical description of the 
functioning of the system components (cf. Chapter 4) 
the auditing authority can measure and evaluate the 
system behaviour by applying corresponding audit 
metrics and success criteria. When this audit is 
passed, the last process step of the Main Audit stage 
follows. As concluding step, the auditing authority 
must define criteria which define the necessity of a re-
audit. Typical criteria can be intrinsically motivated, 
e.g. because of a software update of a system 
component, or extrinsically motivated, e.g. due to 
environmental changes in the ODD of a system 
component. 

After the Main Audit stage, when passed, the 
testing and verification of the present AI-based 
system is finished. However, as defined in the 
necessity criteria, a re-audit can be prompted on 
event- or time interval-basis. If so, the scope of this re-
audit must be defined. The re-audit can be narrowed 
to specific components of a system, reducing the need 
to re-evaluate the whole system and only re-certify 
changed components. 

4.2 Concept of a Safety Guideline 

The first process stage Formalisation consists of three 
process steps. In the beginning, the manufacturer 
must make sure that the present AI-based system is 
sufficiently modularised. This prerequisite is 
explained in Chapter 4.1. The manufacturer can lay 
the foundation of the modularisation early in the life 
cycle of the system. The advantage is that the audit 
can be performed module-wise, thus subsequent 
improvement must not affect the entire system, 
necessarily, but only specific modules. Then, each 
module must be given a dedicated ODD. Methods for 
formalizing an ODD are mentioned in [15] using the 
operational envelope, also techniques described in 
[14] can be utilized to create a uniform domain 
description. In the final step of the process stage 
Formalisation, the manufacturer specifies audit metrics 
and success criteria by which the functioning of each 
module is measured and evaluated in the audit. The 
methodology of a metric for a module strongly 
depends on the purpose of the given module. 
Examples, such as the confusion matrix in case of 
classification problems, are given in [22]. The success 
criteria on how well the modules perform are 
expressed by the given metrics. By applying metrics 
and criteria which are commonly used or required per 
standard the manufacturer facilitates comparability of 
the present system. 

In the subsequent process stage Regulations the 
manufacturer is advised to examine if his AI-based 
system is affected by prevailing or imminent 
regulations. These can be standards such as the 
NMEA 0183 standard [16], acts like the imminent 
AI Act [5] or other regulatory decisions. 

In the last process stage Data & Model the 
manufacturer provides a description of the used data 
and the functioning of the present system. This shall 
benefit a well-performing system and thus a positive 
verification. Data quality is the first part since it plays 
a significant role by reflecting a model’s potential 

experience and knowledge through the range of 
scenarios on which it is tested and developed. The 
variety of manifestations of bad data quality in 
general and in ML-based systems, specifically, as well 
as its assessment, is described in [23]. Subsequently, 
the applied dataset must be described module-wise 
by the manufacturer. This is an obligatory step in the 
preparation for the audit. Based on the dataset 
description, the auditing authority should be able to 
procure suitable test data. Therefore, the dataset 
description must, on the one hand, describe the 
comprising data, e.g. its values and value ranges, and 
on the other hand, the statistics of the dataset, e.g. the 
distribution of certain values applying descriptive 
statistics [24]. In case of publicly available or 
acquirable datasets, the manufacturer must report this 
additionally so that the auditing authority is aware of 
which datasets not to use. Finally, in the last process 
step, IPO pattern, another obligatory step in 
preparation for the audit takes place. The 
manufacturer needs to describe the expected 
functioning of each module from the AI-based system. 
To do so the manufacturer shall make use of 
descriptions based on IPO patterns. More precisely, 
the functioning of each module is described by 
specifying output values to their input values. 

In the subsequent chapter, recommendations for 
actions are derived from the proposed framework. 
These recommendations aim at facilitating the 
implementation of the process steps proposed in this 
framework. 

5 RECOMMENDATIONS FOR ACTIONS 

The following recommendations for actions were 
derived during the development of the framework for 
functional verification as outlined from the full-text 
study VerifAI. These recommendations serve as a basis 
to establish a basis for the collaboration between 
regulating bodies, to standardise the audit procedures 
for MASS and identify future work. 

5.1 Location of testing and verification processes in a 
separate module K 

In consideration of the existing publications of the 
European Commission as well as the procedures in 
the MED, it is recommended to introduce a separate 
module into the existing testing and verification 
processes. It is obvious to locate the testing and 
verification processes for AI-based systems presented 
in this separate audit module. This allows the 
proposed processes (cf. Chapter 4) to be integrated 
without having to adapt existing modules. 

5.2 Standardisation of the exchange of information in 
AI-based systems 

It is recommended to promote the standardisation of 
information exchange and data sources for the testing 
and verification of AI-based systems. Standards can 
significantly simplify and scale the testing and 
verification processes. Exemplary standard 
procedures can be seen in [25]. 
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5.3 Introduction of a model-agnostic testing process 

In order to be able to test the manifold of AI-based 
systems in a uniform manner and to ensure the future 
viability of the testing process, the establishment of a 
model-agnostic testing process is suggested (cf. 
Chapter 4.1). The focus of the test should be to 
determine “whether” and not “how” an AI-based 
system functions properly. This approach enables the 
feasibility, scalability and comparability of the audit 
processes. 

5.4 Formalization of the operational design domains of AI-
based systems 

To enable uniform testing, it is advised to rely on a 
standardised formalization of both the description of 
the operation domain as well as of the measurement 
and evaluation of functional performance (cf. [14], 
[15], [13]). 

5.5 Development of an automated data processing 
infrastructure 

The technical realisation of the testing processes 
should be based on an automatable data processing 
infrastructure to ensure scalability and 
reproducibility. For the data procurement process, it 
is fundamental to rely on standardised operation 
domain descriptions of present systems (cf. [14], [15], 
[13]). Notably, the use of synthetic or augmented data 
is a promising way to independently obtain the 
necessary test data at any time without building up 
long-term data dumps (cf. [17], [18], [19], [20], [21]). A 
crucial advantage in using synthetic (or augmented) 
test data is the generation of novel test data which 
was not used by the manufacturer before. 

6 CONCLUSION 

Current regulatory procedures are inadequate to 
assess maritime AI-based systems (therefore referring 
to MASS) as shown in Chapter 2. New processes have 
to allow systems with a wide variety of architectures 
to be tested, verified and brought to market in a safe 
manner. It is therefore needed to introduce concepts 
which can be implemented parallel to existing 
procedures and measures without interfering with 
innovation or safety. The authors, therefore, propose 
the introduction of a new Module in the framework of 
the MED labelled Module K consisting of guidelines 
for the manufacturer of an AI-based system and the 
regulating body responsible for verifying, testing and 
approving such a system. The guidelines include 
steps which should be performed to address concerns 
arising from bringing these systems on the market 
whilst keeping the amount of required in-depth 
knowledge about their internal functions to a 
minimum, essentially allowing for a black box testing 
procedure. The proposed methods are a basic outline 
of how such a methodology could be implemented to 
allow the verification of MASS. These methods can 
serve as a guideline to specify future research and 
narrow down the fields which must be investigated 
further. 

7 FUTURE WORK 

Despite the given possibilities for modelling complex 
dynamics and correlations with the help of large 
amounts of data, the application of AI with ML 
methods, especially through deep learning, is 
problematic. The quality and reliability of the 
decision-making processes and consequent results of 
given models are directly dependent on the selection 
of the algorithms and quality of datasets. 

Furthermore, the range of available datasets for 
testing the models is severely limited, making it 
difficult to generalise and solve a problem using ML 
methods. One approach to address that issue is to 
establish methods and processes in the development 
phase of safety-critical applications to maintain safety 
and robustness after deployment. Processes and 
methods from other areas, e.g. for computer vision 
applications, could be adapted by transferring 
findings to the maritime domain. Another important 
aspect is how to define and justify methods, processes 
and requirements for datasets and their procurement, 
since they are crucial for the development of robust 
systems based on AI, more specifically ML. 
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