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1 INTRODUCTION 

Regardless on doubt of the famous statement that said 
80% of maritime incident are caused by the human 
error, the issue of human contribution to accidents is 
still remain important to study in the maritime safety 
area [1]. Departing from the traditional approach of 
studying human error for finding the lack of human 
limitation and blaming them, human factors study 
needs to be seen as the area where the human 
limitation is studied to improve working conditions. 
Thus, paradigm shift is needed to enhance the 
understanding of human capabilities, further, to 
facilitate the development of countermeasure and 
preventive strategy.  

For the specific human performance factors that 
caused the most incident, situation awareness (SA) is 
prominent substituent that often mentioned. Human 
error in SA is labeled as “loss of SA”. Incident analysis 

report that was conducted by Grech et. al revealed 
71% of incidents in maritime operator are due to loss 
of SA [2]. Loss of SA will result in the operator failure 
to understand the operation condition and leading to 
the failure to take appropriate action. For thus, as the 
well concept that not only researcher and 
management define but also seafarer well understand 
and relate its importance, IMO already included it in 
crew resources management as one of the non-
technical skill for seafarer to have [3,4]. 

1.1 Human Reliability Analysis in Maritime Operation 

Practice to quantify human error through the process 
of human reliability analysis (HRA) has become the 
practice in other industry, from nuclear power plant 
through the air traffic control [5]. To uniform it, IMO 
with the formal safety assessment (FSA) guideline has 
also mentioned the HRA and various method of it in 
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maritime operation [6]. The HRA is not only useful in 
academic activity, but it was found to be benefit for 
stakeholders such ship owners and safety inspectors 
to identify and minimize the potential risk. The 
concept of hardware reliability analysis was also 
implemented in the HRA methods, including the 
hazard analysis and risk control stage. Seeing the 
HRA as similar with hardware analysis, it is also 
believed similar two combination of method can be fit 
to each other and combined to measure system 
reliability. Various HRA methods have been 
developed, also demonstrated in maritime operation 
cases. Cognitive reliability and error analysis 
(CREAM) is already applicated to derived the marine 
engineers performance reliability by combining 
Bayesian inference and fuzzy methods [7]. In seeing 
future projection, fuzzy methods also used combine 
with success likelihood index methods (SLIM) to 
demonstrate the autonomous operation regarding the 
human-machine interface [8]. Beyond onboard, the 
SLIM methods combined with system theoretic 
process analysis (STPA) are also used to analysis 
human-machine interaction in ship-to-ship LNG 
bunkering [9]. 

Most HRA aims to measure human error 
probability (HEP), that defined as an index to show 
the likeliness the human will conduct an error during 
the specific event. IMO defines it as the ratio of 
number of human error that have occurred, with the 
number of opportunities for human error [6]. In 
general, denominator for HEP is the number of 
chances the human conduct the error, compared to 
the hardware reliability where the denominator is the 
running time of equipment. This led to quantifying it 
by bottom-up approach to predict HEP by retrieving 
various data, mostly accident or incident report. The 
pitfall of employing only the failure database is the 
information only contain the number of failure event, 
without number of successful performance, where it is 
more close to assess the failure probability with 
empiric way [10]. Deciding the human error data from 
the accident report also has limitation since the 
number of accident reports is considered small 
compared to hardware failure data. This limitation 
often counters by including the expert judgement as 
the input, or the simulator experiment data.  

In the lower factors, HRA can be included, 
combine, and consist of several performance shaping 
factors (PSF)[6]. PSF is often treated independently 
from one to the other. Several agree that PSF can be 
overlap, or its influence to each other should be 
considered [11]. The countermeasure of the 
dependency issue between PSF is by utilizing 
Bayesian network. The utilization of Bayesian 
network in HRA is increasing recently [5]. The 
Bayesian network allows us to analyze the likelihood 
of human error and identify the dependencies for 
complex modelling. It also came with the advantage 
of the ability to combine various data.  

Bayesian network utilization in maritime operation 
is steadily increasing, either for HRA purpose or 
system reliability. It has wide application range from 
operator safety assessment to the evacuation training,  
including its application in offshore operation [12,13], 
ship collision [14], emergency situation [15], and ship 
engine operation [7]. The Bayesian network suggest 
PSF interaction and integrating different sources of 

information into the model, once the new information 
or data is exist, it can be updated easily to the model 
[11]. In the context of HRA, the Bayesian network 
provides the ability to contain and combine multiple 
types of information and data, including cognitive 
literature, operation events, statistical data, and expert 
judgment. 

SA concept in human factors field is already 
applied in various work environments, include in 
maritime operation. In this study, loss in SA is 
considered as one of the factors that contribute to the 
human error event. HRA as the methods in 
quantifying human error is applied with adapting the 
engine plan simulator data combine with the subject 
matter experts. Further, Bayesian concept is employed 
to accommodate the dependency between the factors 
in contributing the human error. 

2 MODEL CONSTRUCTION AND UPDATING 

There are two terms involved in model construction 
and updating. In model construction, Bayesian 
network is applied to construct the model and 
calculate the probability of SA failure in the first place. 
While in model updating, the concept of Bayesian 
inference is used to recalculate the probability of SA 
failure by considering the new data from the 
simulator. The difference between the two methods is 
Bayesian network with its graphical methods does not 
necessarily imply the theoretical Bayesian inference. 
However, the Bayesian network in this study is called 
Bayesian since it employed similar rules for inferring 
the probability. 

2.1 Model construction 

The flow process of model construction and updating 
are shown in Figure 1. The Bayesian network in 
calculating human error mostly employed subject 
matter experts input as weighting factors, in this flow 
is to calculate nodes distance. Beyond that, subject 
matter experts also use variable control input to 
calculate condition probability distribution. Within 
this study, the role of subject matter expert is not 
removed, but instead reduced by substituting it with 
the result from simulator data, specifically in the stage 
of calculating the condition probability distribution. 
Bayesian network causal model uses directed acyclic 
graphs consisting of nodes and arcs. The node plays 
as the variable in the model, and the arcs denote the 
causal relationship between these variables. The 
nodes that the arcs point to are called child nodes, 
while the reference nodes are called parents nodes. A 
node with child node and no parent node is called 
root node. As shown in Figure 1, this part refers to the 
first and second stage. For nodes that are discrete, 
their effect on the child node can be quantitively 
expressed through a conditional probability 
distribution (CPD) that shows the influence of parent 
nodes. This part takes the three processes on the last 
section of model construction. 
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Figure 1. Flow of model construction and updating. 

 
Figure 2. Bayesian network general construction 

2.1.1 Identify nodes and causal relationship 

The Bayesian network model has several 
advantages, such as the ability to clearly define causal 
factors. Figure 2 illustrates the causal factor mapping 
for the proposed model, which focuses on estimating 
the likelihood of human failure event (HFE) as the 
general objective of human factor analysis. Based on 
the simulator data, this study focuses on the Bayesian 
network depicted in Figure 2 in general and Figure 3 
as the proposed model, which include three level of 
stages: failure mode, cognitive function, and 
performance shaping factors. 

 
Figure 3. Bayesian network based on the simulator 
experiment 

Failure Mode (FM). HFE can be described as many 
types as possible of activity or process during the 
work. Following the same term in hardware 
reliability, FM is constructed below the HFE to 
explain various types of supporting events that lead 
to the human error itself. This can range from 
processing information process, decision making 
process and taking an action process. In this study, SA 
loss is assigned as one of the FM that construct the 
HFE.  

Cognitive Function (CF). FM are supported by 
various human mechanisms explained by CF nodes. 
CF is determined as a variable that can be examined 
and observed during the controllable environment 
such as simulator, but it is difficult to observe in work 
environment. As the simulator experiment design, CF 
is assigned as one or multiple dependent variables. As 
shown on the Figure 3, there are two CF nodes called 
perception and comprehension, that support the SA 
loss. Perception, as situation awareness definition, is 
the process consuming the cues from the 
environment, while the comprehension is the stage 
where this information from the cues combined with 
the working and long-term memory to create 
meaningful information for the work goal. 

Performance Shaping Factors (PSF). The PSF are the 
lowest, or the root nodes of the modes, as other HRA 
methods also described. In relation to the simulator 
data, the PSF represents the independent variable, in 
this case task-load, expertise, and familiarity. Task-
load refers to the complexity of the performed work, 
the expertise is determined by the skill and 
knowledge of the operator, and familiarity refers to 
experience with specific work environment hardware 
and scenario. These PSF nodes contribute to the SA 
loss by influencing the operator perception and 
comprehension.  

2.1.2 Distance between nodes 

The relative importance of each parent node in 
influencing the child nodes are established by 
considering the relative importance of one parent 
node compared to others. Røed suggested that this 
can be done using a weight wi for each parent node i 
[12]. In this study, we employed analytical hierarchy 
process to conduct pairwise comparisons and 
determine the weight. We invited four experts from 
academia who have professional experience on board 
in engine department as described on Table 1. The 
experts provided their weighting answers 
individually. 
Table 1 Profile of the expert as subject matter experts ________________________________________________ 
No. Professionals  Onboard   Duration ________________________________________________ 
1  Academics   Chief Engineer 15 years 
2  Academics   1st Engineer  5 years 
3  Academics   Chief Engineer 14.5 years 
4  Academics   Chief Engineer 10 years ________________________________________________ 
 

The weighting process resulted in the construction 
of perception as cognitive function, where the task-
load has a relative importance of wT=0.26, expertise 
with wE=0.41, and familiarity with wF=0.33. Similarly, 
in the construction of comprehension, task-load had a 
relative importance of wT=0.13, expertise with wE=0.55, 
and familiarity with wF=0.32. Lastly, the weight is also 
applied to determine the importance of each CF in 
construction FM. In this case, perception had wP=0.14, 
while compression has wC=0.86, in constructing the SA 
loss as the main goal HRA in this study. 
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The relative importance result is used to define the 
distance between the child node and its parent nodes. 
The probability of the child node in certain states 
should be assigned smaller if the parent nodes are in 
different states. Take the example of CF perception 
node, if its PSF task-load node is in the easy state, PSF 
expertise node in high state and PSF familiarity node 
in good state, the PSF node perception should have 
higher probability of being in the high state compared 
to medium and low states. Røed suggested the 
conditional probability can be measured using this 
distant methods [12]. Considering the direction of 
change its parent nodes, we applied the Li method 
that modified the equation into the absolute value, as 
mention in the equation above, to distribute the 
probability of the child node [16]. 

2.1.3 Conditional probability for child nodes 
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To assign the probability distribution to each state 
on child nodes, the formula from Røed is used [12]. In 
the equation, the numerator is used to determine the 
probability of each state of the child node in the focus, 
while the denominator is normalization factor that all 
state of the child sum up to 1. The higher R index will 
make lower probability where the node in focus is 
state distant from the parent’s states. While Røed uses 
the expert input to decide the R index, this study 
demonstrates how to reduce the uncertainty by using 
the simulator result. Approach using simulator data 
to decide R index has been demonstrated by Li in the 
nuclear power plant analysis [16]. In this study, we 
apply different approaches to decide the R index. 
Table 2. Perception and comprehension sensitivity from 
simulator experiment ________________________________________________ 
Variable     Perception, Comprehension ________________________________________________ 
Task Load    Easy      Complex ________________________________________________ 
Familiarity  Good   Bad   Good   Bad ________________________________________________ 
P1    1.40 0.54 0.42 0.42 1.81 1.38 0.95 0.00 
P2    1.38 0.42 1.40 0.95 1.94 0.42 0.00 0.00 
P3    2.35 1.38 1.38 0.42 1.40 0.95 -0.42 0.00 
P4    2.77 0.95 0.95 0.42 2.35 0.00 0.86 0.00 
P5    2.35 0.42 1.38 1.40 1.40 0.54 0.97 0.42 
P6    2.77 1.94 1.93 0.00 2.77 0.42 2.77 0.54 
P7    2.35 0.95 1.38 0.95 0.97 1.81 1.93 -0.54 
P8    2.77 0.42 1.81 0.95 0.97 0.00 1.40 0.95 
P9    1.38 1.38 1.94 0.95 1.94 1.81 2.35 0.97 
P10   1.40 0.54 0.95 0.42 1.81 0.00 -0.54 -0.95 
P11   1.38 0.00 1.81 0.00 0.97 0.00 1.38 0.00 
P12   1.40 0.42 1.38 0.95 1.81 0.42 0.54 0.00 
P13   1.81 -0.54 0.97 -0.42 0.97 -0.42 -0.43 0.00 
P14   2.77 0.00 0.95 -0.42 0.54 0.54 0.97 0.00 
P15   1.94 0.00 1.94 -0.42 0.95 -0.42 0.86 0.00 
P16   2.35 0.42 1.38 0.54 2.35 0.42 0.97 -0.95 ________________________________________________ 
 

The simulator result is explained in Table 2. The 
simulator experiment is designated with two task-
load states: easy where the simulation is under ocean 
going scenario, and complex for entering-port 
scenario where stand-by engine procedure must be 
conducted. Familiarity has a bad state where the first 
measurement is taken, and good when the repeated 

measurement is taken. The sensitivity of perception 
and comprehension level of situation awareness 
measured by freeze-probe methods under signal 
detection theory (SDT) [17,18]. The higher number on 
it means the ability of each participant to discriminate 
between the false alarm and correct rejection of the 
questioned parameter is better. The participants P1 
until P8 are categorized with expertise state high, and 
P9 until P16 categorized with expertise state low. 
Within this data, two thresholds are applied to 
categorize the measurement result into three states: 
low, mediate, and high. Important to note that the 
average mediate state should have the larger number 
of distributions.  
Table 3. Simulator result distribution for perception ________________________________________________ 
Parent or CF   Pr (CF | Parent State) ________________________________________________ 
Task-load   Easy       Complex ________________________________________________ 
Experience   High   Low   High   Low ________________________________________________ 
Familiarity   Good Bad Good Bad Good Bad Good Bad ________________________________________________ 
Percep- High  0.75 0.00 0.25 0.00 0.25 0.13 0.13 0.13 
tion  Mediate 0.25 0.80 0.75 1.00 0.75 0.50 0.75 0.38 
   Low  0.00 0.13 0.00 0.00 0.00 0.38 0.13 0.50 ________________________________________________ 
 
Table 4. Simulator result distribution for comprehension ________________________________________________ 
Parent or CF   Pr (CF | Parent State) ________________________________________________ 
Task-load   Easy       Complex ________________________________________________ 
Experience   High   Low   High   Low ________________________________________________ 
Familiarity   Good Bad Good Bad Good Bad Good Bad ________________________________________________ 
Compre- High  0.13 0.13 0.00 0.00 0.13 0.00 0.13 0.00 
hension Mediate 0.88 0.75 0.50 0.50 0.63 0.38 0.38 0.13 
   Low  0.00 0.13 0.50 0.50 0.25 0.63 0.50 0.88 ________________________________________________ 
 

The assigned conditional probability retrieved 
from the simulator result was then compared with the 
conditional probability from the Bayesian network 
with R value varied from 0 to 5. We simply assign 
RMSE function as stated below to decide the 
comparison between probability from simulator data 
e and the probability from Bayesian model f with 
scenario i and the state j. The m and n explains the 
numbers of scenario and number states respectively. 
The R value was then decided based on the 
comparison which has the lower RMSE. In this case, 
R=3.15 and R=1.22 are assigned for calculating with 
Equation 2 to calculate the CPD for perception and 
comprehension nodes. The result of each CPD is 
shown in Table 5 and Table 6 for the perception node 
and comprehension node, respectively. 

( )2

1

1
=

= −∑ ∑
m n

ij iji j
RMSE e f

mn
 (3) 

Table 5. Perception CPD ________________________________________________ 
Parent or CF   Pr (CF | Parent State) ________________________________________________ 
Task-load   Easy       Complex ________________________________________________ 
Experience   High   Low   High   Low ________________________________________________ 
Familiarity   Good Bad Good Bad Good Bad Good Bad ________________________________________________ 
Percep- High  0.80 0.34 0.23 0.10 0.44 0.13 0.11 0.03 
tion  Mediate 0.17 0.55 0.64 0.46 0.46 0.64 0.55 0.17 
   Low  0.03 0.11 0.13 0.44 0.10 0.23 0.34 0.80 ________________________________________________ 
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Table 6. Comprehension CPD ________________________________________________ 
Parent or CF   Pr (CF | Parent State) ________________________________________________ 
Task-load   Easy       Complex ________________________________________________ 
Experience   High   Low   High   Low ________________________________________________ 
Familiarity   Good Bad Good Bad Good Bad Good Bad ________________________________________________ 
Compre- High  0.54 0.36 0.25 0.19 0.46 0.29 0.23 0.16 
hension Mediate 0.30 0.42 0.46 0.35 0.35 0.46 0.42 0.30 
   Low  0.16 0.23 0.29 0.46 0.19 0.25 0.36 0.54 ________________________________________________ 

2.1.4 Calculating target node probability  

The SA loss as the failure mode in the proposed 
Bayesian model in this study is binary state; means 
either the condition meets the true or false state. While 
the node in the cognitive function and performance 
shaping factor level is constructed by three states, the 
following step is necessary to align it with the failure 
mode level. The condition probability distribution in 
the cognitive function is assigned as equation below. 

1= =

= ∑ ∑
fn

j basis i ik ik
i k a

P P w P Q  (4) 

The conditional probability of failure mode node Pj 
is calculated based on the probability of each parent 
cognitive function node Pik with states k=a,b,c. The 
weighted value wi is retrieved from subject-matter 
experts like the previous step in weighting the PSF 
nodes. Qik is the corresponding adjustment for the 
Pbasis. We follow the practice by Li to use Pbasis=0.01 as 
the basic probability of error in SA, and 100-fold as 
the number of compromise adjustment. This 
configuration will made the adjustment factor for 
parent nodes state to have Qik=0.01, Qik=1, Qik=100 for 
parent node high, mediate, and low respectively. 

Given the example, when the Task-load is 
Complex, Experience is high, and familiarity is bad, 
the probability distribution of perception is  0.13, 
0.64, and 0.23 from Table 5, and the probability 
distribution comprehension is 0.29, 0.46, and 0.25. 
Where the weighting can be retrieved from the 
previous explanation of subject matter experts. The 
probability of SA loss given this condition can be 
calculated as follow: 

( ) ( )( )0.14  0.13 0.01 0.64 1 0.23 100 0.86 0.29 0.01 0.46 1 0.25 100

0.253

= × × + × + × + × × + × + × =

=
fail basisP P  

 
Figure 4. SA loss probability comparison from Bayesian 
network and expert expectation 

The result from the Bayesian network modelling is 
shown in Figure 4. The comparison includes the 
expert expectation that was measured using the free 
scale on the paper. The expert given the condition of 
simulator result and asked how likely the participant 
will fail in attaining the SA in each scenario. The 
validation is not with an aim to validate until the level 
of unit, but the tendency of the pattern comparison. It 
can be accepted the Bayesian network result is follow 
the expert expectation pattern at the most, except in 
interception of scenario familiarity is good and 
expertise is low, the Bayesian network result have 
tendency to have higher probability in these scenarios. 

2.2 Model updating 

( ) ( ) ( )
( )

|
| =

P D H
P H D P H

P D
 (5) 

In this model updating method, the calculated 
probability for each combination of performance-
shaping factor, cognitive function, and failure mode 
will be re-calculated given the condition if the new 
simulator data exists. The method is based on the 
Bayesian inference as explained in the equation 
below. The aim is to update the posterior distribution 

( )|P H D  with the prior known information 
distribution ( )P H  with collected data from 
likelihood model ( )|P D H  that normalized with 
probability of distribution ( )P D  The Bayesian 
inference able to use every time the new data exists, 
means the posterior data from one modelling process 
became prior data for the next modelling study or 
stage. 

2.2.1 Prior distribution construction 

Regarding SA loss as the one factor for human 
error event, it can be explained using the binomial 
distribution explained by equation below. The 
distribution expresses the uncertainty about the 
number of failures x occurred in the given condition 
of demands n with the parameter probability of 
failure p. This parameter p is uncertain that sometimes 
derived from expert judgment or data. Groth et al 
suggest the p can be retrieved by using the Bayesian 
inference [19]. 

( ) ( )| 1 − 
= − 

 

n xxn
f x p p p

x
 (6) 

We used the same approach as the previous 
method in deciding the p by using the beta 
distribution. Probability density function as shown in 
below equation express the beta function ( ),α βB  
with function to normalize the distribution. From 
with explanation from Groth et al, the distribution can 
be conjugated with binomial distribution, where 
posterior distribution parameters  αpost and βpost are 
assigned using equation below [19]. The next step in 
using Bayesian inference is with assigning the value 
of α and β. 
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α β
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=

ap p
f p

B
 (7) 

= +post priora a x  

β β= + −post prior n x  (8) 

To specify the prior distribution p0, we applied the 
constrained non-information (CNI) distribution [19] 
As shown in the following equation, the a is estimated 
as the number of failure contained in the prior 
distribution, and the denominator (α+β) is considered 
as the number of demands. The beta distribution is 
constructed by α=0.5 and β derived from the equation 
constraint. The extract prior distribution p0 from the 
new existing simulator data is shown in Table 7. 

( )( ) ( )0, αα β
α β

= =
+

E Beta E p  (9) 

Table 7. Prior distribution (p0)  ________________________________________________ 
Expertise Task-load Familiarity E(p0) 𝛼𝛼 𝛽𝛽 Prior Distribution ________________________________________________ 
High  Easy   Good   0.145 0.5 2.9  p0, Beta (0.5, 2.9) 
       Bad   0.215 0.5 1.8  p0, Beta (0.5, 1.8) 
   Complex  Good   0.179 0.5 2.3  p0, Beta (0.5, 2.3) 
       Bad   0.253 0.5 1.5  p0, Beta (0.5, 1.5) 
Low  Easy   Good   0.269 0.5 1.4  p0, Beta (0.5, 1.4) 
       Bad   0.465 0.5 0.6  p0, Beta (0.5, 0.6) 
   Complex  Good   0.357 0.5 0.9  p0, Beta (0.5, 0.9) 
       Bad   0.584 0.5 0.4  p0, Beta (0.5, 0.4) ________________________________________________ 

2.2.2 Posterior distribution updating 
Table 8. Simulator result distribution ________________________________________________ 
Variable      Perception, Comprehension ________________________________________________ 
Task Load     Easy       Complex ________________________________________________ 
Familiarity   Good   Bad   Good   Bad ________________________________________________ 
P17    1.81 1.38 1.81 0.54 0.95 0.00 2.35 0.95 
P18    1.81 0.42 1.40 0.00 0.43 0.00 0.95 0.00 
P19    2.35 0.95 2.35 0.95 1.40 0.54 1.40 0.42 
P20    1.94 0.54 1.81 0.54 1.40 0.00 2.35 0.54 
P21    1.81 0.43 1.94 1.38 1.40 0.97 1.81 0.97 
P22    2.35 1.38 2.35 2.35 1.40 0.97 1.38 1.38 
P23    1.81 2.35 1.38 0.42 2.35 0.42 0.00 1.40 
P24    2.35 1.38 2.35 0.95 2.35 1.38 1.81 0.42 ________________________________________________ 
 

The process updating the prior distribution with 
new simulator data can be obtained by utilizing 
Equation 8. The aims is calculating the posterior 
distribution p1 based on the prior distribution p0 and 
the new distribution parameters  αpost and βpost. For 
thus, number of failures x occurred in the given 
condition of demands n need to be defined. Table 8 
illustrates the additional simulator result from eight 
participants with expertise level assumed to be high. 
In this step, a different approach is used to highlight 
the participant who has perception or comprehension 
equal or below 0 are categorized as loss in SA. Based 
on the categorization, as also shown on Table 9, there 
are eight trials for each scenario combination, then 
number of opportunities can be assigned n=8, and the 
number of failure x is assigned in each scenario 
combination. The  αpost and βpost is retrieved using 
Equation 8, and the updated SA loss for selected 
scenario.  

Table 9. Posterior distribution for (p_1) ________________________________________________ 
Exper- Task-  Famili- Data  𝛼𝛼 𝛽𝛽` Posterior    E(p1) 
tise  load  arity  (x/n)   Distribution ________________________________________________ 
High  Easy  Good  0/8  0.5 10.9 p1, β (0.5, 10.9) 0.044 
      Bad  1/8  1.5 8.8  p1, β (1.5, 8.8) 0.145 
   Complex Good  3/8  3.5 7.3  p1, β (3.5, 7.3) 0.324 
      Bad  2/8  2.5 6.4  p1, β (2.5, 6.4) 0.282 ________________________________________________ 

3 DISCUSSION 

HRA methods to measure and predict human error in 
maritime operation are already developed with 
various methods. The Bayesian network and Bayesian 
inference is used in this study to demonstrate method 
which use the simulator data for the probability 
distribution calculation. The Bayesian network has the 
advantage of treating the dependencies of PSF, which 
often treat independent of each other in recent HRA 
methods. Further, Bayesian inference concept in the 
second stage demonstrated another possibility to 
update the probability distribution of human error if 
the new data from the simulator exists. This has an 
advantage since there is no necessity to reconstruct 
the model. 

In the first stage of model construction, the three-
node level is introduced. FM were introduced as the 
possible process or activity that support event led to 
the human error. Situation awareness is introduced as 
single FM in this study. CF is introducing as human 
mechanism in construct the activity, its assigned as 
dependent variable in simulator experiment. 
Perception and comprehension were introduced in 
constructing situation awareness. Last, PSF is 
introduced as the lowest node in the model. In 
relation to the simulator experiment, the PSF 
represents the independent variable. Three PSF are 
assigned in the model: task-load, expertise, and 
familiarity. The proposed methods to replace the 
expert judgment in deciding R-value are 
demonstrated to reduce the subjective expert 
judgment uncertainty. However, the input from 
expert judgment is still mandatory to put the 
weighting factors between the nodes in the same level 
node. The second stage demonstrates updating the 
prior distribution with the Bayesian inference 
methods. Here the additional simulator data is used 
to recalculate it into posterior distribution.  

The human error probability as the output from 
the model was compared to the expert expectation for 
each scenario combination. It is observed that 
Bayesian network results follow the same pattern as 
the expert expectation input. However, several 
comparisons such the scenario with familiarity is 
good and expertise is low, is have higher evaluation 
from the Bayesian Network. Thus, the Bayesian 
network in this model still lacks sensitivity, especially 
in the scenario which has close result of human error 
probability. 

The general construction of HRA with Bayesian 
network offers the flexibility to cover more PSF into 
the model. However, considering the PSF that can be 
observed in the simulator will limit to detect all PSF 
exist in other studies. This is the coming limitation of 
the Bayesian network in HRA context. Thus, the 
incomplete representation cannot explain the complex 
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relationship between variables. The second limitation 
from employing simulator data is, during the session, 
the participant is well now their performance is being 
observed. This implies the participants put more 
effort during the simulation. This must be noted since 
human error calculation is aimed to measure the error 
during the normal condition.  

Work onboard a ship is divided into big portions 
of navigation and engine operation work. Defining 
general PSF that includes the two areas is the future 
challenge that must be considered. The remaining 
challenge in HRA is the various definition of the 
denominator in probability, the number of 
opportunities for human error which remain wide 
interpretation for each method. An approach to 
combine the result of HRA needs an adjustment 
method to tackle this challenge. Similar to the 
reliability in hardware, such study may become 
reference under the IMO guideline to include in the 
formal safety assessment. 
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