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1 INTRODUCTION 

In recent decades, many fields of knowledge have 
implemented data collection techniques and data 
analysis methods. Among many, machine learning is 
one of the most widely applied methods for data self-
analysis. Today, machine learning has concrete 
examples in many engineering systems and 
intuitively merges concepts such as cyber-physical 
systems and cognitive computing into complex and 
smart platforms. The previous statement is, in some 
ways, the result of advances in the levels of data 

storage and data acquisition in engineering systems. 
In today's industry, it is common to find physical 
engineering systems with hundreds of sensors that 
collect data on the performance of their operational 
functions. Therefore, it is expected to find hundreds of 
contributions and applications that use the 
information generated to improve the current state of 
engineering systems, qualitatively or quantitatively. 

As an example of engineering systems, cooperative 
overhead cranes are critical devices in many 
continuous production industries. They are usually 
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installed in processes with hazardous conditions and 
difficult access. Each overhead crane manages a 
section of the ongoing process, is fixed on the 
warehouse roof, its movements are limited to a 
specific working range, and its criticality comes from 
the sometimes-unexpected unavailability of an 
overhead crane that can stop an entire production 
process. 

Today, these cranes are changing their design due 
to the new needs of the current industry. For example, 
the new generation of overhead cranes is equipped 
with sensors to collect information. However, the data 
generated by sensor systems are often not exploited 
adequately. When talking about cooperative overhead 
cranes, the two main research fields studied are load 
operation control, such as the examples [9], [11], and 
[14], and maintenance, such as the examples [18] and 
[19]. The reason researchers focus their attention on 
these fields is simple: incorrect load control and weak 
maintenance are the most common causes of 
overhead crane failures in today's industry. Some 
examples of studies that analyze the root cause of 
crane failures are [3], [10], and [15]. Even when cranes 
with different working conditions and functions are 
analyzed in the cited contributions, as a connection 
between them, we find that weak maintenance cycles 
and wrong load control are the causes of crane 
failures. 

Focusing on maintenance strategies, a well-
established approach to designing suitable 
maintenance strategies is reliability analysis, as it 
allows us to measure the risk of possible failures in 
overhead crane systems and incorporate and evaluate 
potential risk scenarios for the system. Examples of 
contributions in this field are [2] and [8]. However, a 
weakness of the reliability analysis approach is the 
reliance on data to predict realistic scenarios. In this 
paper, we propose to integrate reliability-based 
maintenance coordination and data analysis methods 
by offering an engineering solution for a cooperative 
overhead crane system operating in a steel plant, 
which is embedded in an integrated digital platform, 
and somehow manage to address the weakness of 
reliability analysis. 

The research conducted here arises from a local 
request from the maintenance department of a steel 
plant with organizational issues. Although it is a local 
solution, the achievements provide a practical 
example of how a reliability model can be tailored to 
address a local solution using data generated in the 
daily work of the maintenance department. The idea 
presented in this paper aims to propose, through a 
practical example, how an existing overhead crane 
system can be adapted to the digital era and 
contribute to other data-driven applications. Although 
the proposed model is its broadest conception, it is an 
oriented engineering solution for coordinating 
maintenance activities; the paper's subject is the 
Degradation Data Self-Analysis (DDSA) layer, which 
ensures the accurate and robust treatment of 
degradation data. 

Focusing on the performance of this layer has a 
well-justified reason. For instance, the layer avoids 
human intervention in online filtering and estimation 
of the degradation-related parameters of the 
reliability-oriented optimization model. In addition, 

the layer ensures a comprehensive mathematical and 
technical connection between the degradation data 
due to the system operation and the optimization 
model parameters, considerably decreasing errors 
while ensuring that up-to-date information is always 
used when running the model. In addition, the 
selected frequency models, outputs of the layer, allow 
one to prolong in time the degradation due to the 
operation of the system, which in turn provides for 
evaluation with scenarios of how the planning process 
will work in the maintenance department of the steel 
company when unexpected failures are considered. 
That said, the criticality of this layer in estimating the 
performance indicator, a variable that holistically 
measures the quality of the maintenance coordination 
process, is evident. 

The DDSA layer is the process of filtering, 
processing, and storing the degradation data of the 
proposed engineering solution. The source of raw 
degradation data involved in this process comes from 
two systems used in the daily work of the steel 
company: SAP (Systems, Applications & Products in 
Data Processing) and SCADA (Supervisory Control 
and Data Acquisition). The proposed paper is an 
extended and more in-depth version of the work 
presented by [18]. In this paper, we test and validate 
the DDSA layer, which fills the decision gaps 
presented in previous work. Moreover, with the 
validation, we support the conclusions for a specific 
scenario and all scenarios analyzed afterward. 

Specifically, in this paper, we extend and expose 
the functional connection between the system 
components, making clear the relevance of the DDSA 
layer in the developed model and the algorithm 
implemented to execute the fitting process. In 
addition, we isolate, test, and show the process of 
fitting simple distributions in practice with actual 
data. For illustrative purposes, the selected example 
and the described data come from a specific 50-ton 
overhead crane with 59,501 hours of continuous 
operation (6.8 years) and 355 hours of the replacement 
or repair process. Also, during the validation, we 
include the analysis of the impacts introduced by the 
changes in the data, which consists of changing the 
input data in a controlled way and re-evaluating the 
fitting selection process. Mainly two experiments are 
conducted; the first consists of contaminating the 
input data with new values generated from the final 
selections, and the second one consists of removing 
the last records of the dataset. 

Once the scope of the paper has been declared, the 
remaining sections of the document are presented as 
follows: First, the context of degradation data is 
discussed, which highlights the value of the DDSA 
layer to ensure accurate and robust treatment of the 
degradation data. Then, using a 50 tons overhead 
crane as a case study, the DDSA layer is tested in 
practice. Finally, the conclusions highlight the main 
results of this contribution and the connections to 
future work. 
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2 MATERIALS AND METHODS 

2.1 Maintenance – Degradation Modelling 

In continuous-process productions, common 
indicators for monitoring the performance of a 
technical system, which provides a service or 
supports a production line process, are based on the 
system's availability or its components over time. The 
availability A(t) of a technical system over time can be 
impacted by two main reasons: planned maintenance 
or unexpected failures. From the point of view of state 
diagrams, a technological system can have three 
possible states: available, unavailable due to 
unexpected failures, and unavailable due to planned 
maintenance. 

In the case of maintenance activities, imagining a 
sequence in time, maintenance schedules can be 
represented by the variables M maintenance-start-
time and D maintenance-duration-time, where M = 
{m1, m2, …, mk}, D = {d1, d2, …, dk} and k number of 
maintenances. Both variables M and D are planned 
and can be selected according to maintenance 
strategies in the analyzed process. 

In parallel, degradation can be treated similarly, 
knowing that degradation is inherent in a technical 
system. The degradation over time can be represented 
by the variables F time-to-failure and R time-to-repair, 
where F = {f1, f2, …, fn}, R = {r1, r2, …, rn} and n is the 
number of failures. In particular, variables F and R are 
considered random variables. In the case of F, 
unexpected failures are related to component 
degradation due to system operation and are 
unpredictable in almost all cases. In the case of R, the 
time depends on the magnitude of the failure, the 
expertise of the workers who repair the failure, and 
the logistics behind it. In conclusion, it is also defined 
as a random phenomenon with certain thresholds. 
Since the F and R variables are defined as random, the 
system's availability A(t) over time is defined as a 
stochastic process. 

All the variables M, D, F, and R presented above 
are times and can be defined as non-negative 
variables. Maintenance scheduling is usually a 
planning process, i.e., depending on the planning 
window (monthly, quarterly, or annual), planners 
propose the sequence to be executed in the next 
window. Coordination of the maintenance process is 
crucial to ensure the life cycle of any system, and its 
optimization is a daily task in any technical system. It 
is not surprising that availability A(t) plays an 
essential role in maintenance coordination and 
appears in several approaches used to coordinate this 
process, such as the examples of [6], [12], [7], [4], and 
[1]. In approaches in which the modeling of the 
availability A(t) is included, it is also necessary to 
make decisions related to the random phenomenon, 
that is, the random variables F and R. The usual 
approach is to assume the progression of the 
degradation process in the planned window based on 
the historical degradation data of the analyzed 
system. The way to include degradation is to fit some 
model to the historical degradation data, resulting in 
one model representing F and another for R, and then, 
based on the fitted model, ~F potential failures and ~R 
repair times are simulated. The fitting and simulating 
processes are performed for each component of the 

analyzed system. The simulated values are 
convoluted with the proposed sequence of planned 
maintenance, which allows for modeling the system 
availability A(t) and assessing the maintenance 
scheduled impact. 

Focusing our attention on variables F and R and 
the modeling of the fitting process, the problem to be 
solved in this case is to find the best model to 
represent the historical data, which is then used to 
simulate a potential degradation process. The only 
known information is that we are dealing with non-
negative variables, and the stochastic process A(t) is 
continuous in time. Fitting models can be divided into 
non-parametric and parametric. 

A contribution supporting this classification is [5], 
which tested the performance and covered 
convergence issues during the fitting process in both 
approaches. The research in the above contribution 
concludes an introductory statement that the 
convergence of the fitting process depends on the 
features of the data. They end that the non-parametric 
approach should be used when the data is dense; 
otherwise, parametric is the way to go. In our case, 
degradation data, the subject of study here, are 
usually sparse; even assumptions are sometimes 
needed for highly reliable systems. Therefore, given 
the features of the data, parametric models are the 
tentative choice for our problem. However, the 
definition of dense data is not well defined. The 
historical degradation data, represented in our case by 
F and R, are non-negative random variables. These 
recorded values can be assumed as samples of a 
generating function, which means the degradation 
process, and in which the order of the failures is 
irrelevant. Given the constraints and features of the 
degradation data, the F and R variables are usually 
modeled with frequency models. Knowing also that F 
and R are used to model, in our case, a continuous 
stochastic process, we further restrict the option space 
to continuous frequency models. 

A comprehensive list of parametric frequency 
models is continuous probability distributions. It 
should be noted that parametric frequency models 
were used in all references cited above, which are 
related to the concept of A(t) availability discussed. 
On the other hand, non-parametric ones are kernels, 
splines, neural networks, a simple frequency 
histogram, and the empirical distribution, which have 
been applied in [22] and [16]. The selection of the final 
approach and model to be used is discretionary and is 
guided by the individual viewpoint of the research 
conducted. Based on expertise in the field and the 
references cited, we consider parametric and 
continuous frequency models to be the models that 
have the most practical applications, are the most 
transparent, and consequently achieve the expected 
results. 

Deciding on the set of models to be used to model 
the variables F and R does not end the discussion. A 
parametric model (as well as a non-parametric one) is 
estimated based on the available historical data, and it 
is well-known that the inference error decreases when 
the degradation data are more representative of the 
analyzed phenomenon. Consequently, when more 
degradation data are available, a good strategy is re-
estimating the model's parameterization, always 
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seeking to get closer to the actual phenomenon. Here, 
machine learning approaches play an essential role in 
the discussion. In current practice, integrating data 
monitoring and processing is an important goal. The 
main idea is to create smart data processing layers to 
update the models' parameterization based on the 
newly available data. Several contributions in this 
field, such as [17], [21], [13], and [20], have proposed 
practical applications, and the research presented in 
this paper is another contribution in the same 
direction. 

Here, we propose a smart data-driven algorithm to 
find the most suitable parametric model for the 
degradation variables F and R. The algorithm is 
encapsulated in the DDSA layer introduced in the 
previous section, which runs online and is fully 
connected to the SAP-SCADA systems, which makes 
it possible to update the data when a scenario is run 
on the integrated digital platform. The entire DDSA 
layer tested and validated in this paper is 
encapsulated in functions implemented in MATrix 
LABoratory (MATLAB) that work without interaction 
with the model user, and we insist that the validation 
of their performance is important in this research. 

Finally, before finishing this section, in section 2.2, 
we present the description of the algorithm 
implemented in MATLAB, which is used in the DDSA 
layer, summarizing the standardization efforts of the 
fitting process. In section 2.3, we contextualize the 
relevance of the fitting process in the integrated 
maintenance platform by presenting the functional 
modeling at the component and system levels, 
discussing, and describing the connection between 
them. 

2.2 Fitting Single Distributions Algorithm 

1. For each i-th overhead crane, the sequence of Fi and 
Ri is filtered from the SCADA-SAP systems by 
means of a unique identifier (ID). By construction, 
both random number vectors have the same 
length. 

2. Independently, for each streamed sequence, the 
following steps are applied: 
− Given a random variable sample ~X = (x1, x2, …, 

xn), in our case, either the F or R random 
sequence filtered and a set of k-th predefined 
and preselected single continuous distributions, 
we apply for each k-th case the following steps: 

− Fit the data (either F or R) to the k-th single 
distribution by maximizing the log-likelihood 
function ln n(x|θ), i.e., the negative logarithm 
value of the product of the probability of the 
sample data (X), given the parameters θ of the 
distribution. If the fit does not converge for the 
given parametric distribution, the process ends; 
otherwise, it continues as follows: 
− Save the k-th index for ID purposes, the 

estimated negative log-likelihood value 
when the maximum likelihood estimation 
(MLE) method was applied (to record the 
process performance), and the parametrized 
single distribution structure. 

− II. Apply two goodness-of-fit tests to 
analyze the results of the fit: first, the one-

sample non-parametric Kolmogorov-
Smirnov (KS) test, defined as 

( ) ( )( )* ˆmaxD F x F x= − , 

where ( )F̂ x  is the empirical cumulative 
distribution function of the data and F(x) is 
the cumulative distribution function of the 
fitted single parametrized distribution; and 
then the Anderson-Darling (AD) test, 
defined as 

( ) ( )( ) ( ) ( )
2ˆn F x F x w x dF x

∞

−∞
−∫ , 

where n is the number of data points in the 
sample, ( )F̂ x  and F(x) as described above, 
and w(x) is a weight function defined as 

( ) ( ) ( )( ) 1
1w x F x F x

−
 = −  . 

In the case of the AD test, the data is the 
ordered sample. 

− Apply the Akaike information criterion 
(AIC) defined as 

( )ˆ2log 2L kθ− + , 

where log L( θ̂ ) denotes the optimal log-
likelihood objective function value, and k is 
the number of parameters of the single-fit 
distribution. 

− Estimate the parametrized fit distribution 
structure's theoretical mean µ and variance 
σ2. 

− Store the frequency of the data (number of 
records) and the sum of the data (in the case 
of variable F, we are storing the hours of 
operation). 

− Add a logical check value following the rule: 
if the k-th fitted distribution has finite µ and 
σ2, Flagk = 1; otherwise, Flagk = 0. 

− Reject distributions with Flagk = 0 (fits with 
infinite mean or variance). 

− If the data records are less than ten, the best fit 
is the exponential distribution. Otherwise, the 
best fit is the k-th distribution with minimum 
AIC value. 

3. End of the fitting process algorithm. 

2.3 Functional Modelling of the Integrated Maintenance 
Platform 

Looking at contextualizing the integrated digital 
platform, we can say that the platform is adapted to 
support online maintenance activities coordination. In 
the system analyzed, in our case, a set of overhead 
cranes in a selected manufacturing industry, the 
maintenance department, which uses the digital 
platform for planning purposes, has risk 
circumstances when unanticipated failures occur 
during scheduled maintenance activities. 

The platform was created to reduce the 
overworking days in the maintenance department by 
minimizing the convolution between scheduled 
maintenance activities and unanticipated failures. The 
impact of risk situations exists because the set of 
overhead cranes is critical for moving demanding 
loads on the production line of the manufacturing 
industry. This undesirable situation stresses workers 
because they work under pressure during the 
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interaction between scheduled maintenance activities 
and unanticipated failures. 

The integrated digital platform comprises three 
blocks of self-analysis: data filtering and synthesis, 
model simulation through scenario evaluation, and 
optimization layer to coordinate maintenance 
activities. Each block is supported by independent 
algorithms implemented in MATLAB. Also, the data 
sources are mainly two professional systems: SAP 
(Systems, Applications, and Products in Data 
Processing) and SCADA (Supervisory Control and 
Data Acquisition). Integrating all blocks with a 
dynamic window that visualizes the model 
performance conforms to the digital platform and 
connects all blocks through the integrated digital 
platform. 

The data processing (filtering and synthesis) block 
ensures the existence of all the necessary parameters 
to evaluate the modeled scenario. Therefore, as we 
can see, each time a scenario is loaded for evaluation, 
the model parameterization is calibrated with the 
updated information. 

In addition, the digital platform provides, for a 
given proposed scenario to be evaluated, the option of 
using an optimization algorithm (heuristic in our 
case) to find the best maintenance activities schedule 
for the scenario. In this case, the optimization 
algorithm minimizes the interaction between 
unexpected failures and the maintenance activities 
scheduled for the set of overhead cranes considered. 

Having briefly contextualized the integrated 
digital platform, we focus on the first block, the data 
processing block, specifically the degradation data 
processing. 

Previously, we introduced how the measurement 
of system availability A(t) enables coherent 
coordination of the maintenance process. Now, we 
intend to describe and deepen the integrated 
platform's functional modeling point of view. For this 
purpose, we divide the description into two levels, 
component, and system, making visually clear the 
inner workings of the digital platform. However, 
although the definition has been divided, everything 
is connected. Furthermore, it is necessary to 
emphasize that the platform operates without human 
intervention in data processing, and the platform user 

only interacts with it through the system-level settings 
of the parameters of the assessed scenario. 

Fig. 1 shows the model composition of each 
component considered on the digital platform, in our 
case, overhead cranes. 

The stochastic functional capacity of each overhead 
crane z1 = f (t | θ1) is composed of the convolution 
between the degradation process CD = f (t | θ) and the 
planned maintenance process CM = f (t | θ), where t is 
the time and θ in both cases is a set of parameters that 
depend on the function describing the underlying 
process, either degradation or maintenance. 

In the case of the maintenance process, a 
deterministic concatenation of the maintenance 
lifecycles M = f (t | θ) and maintenance duration      
D = f (t | θ) composes the maintenance activity 
scheduling. Sometimes, the functional variables M 
and D use predictive models or are fixed standard 
times provided by the overhead crane manufacturer. 
In any of them, we deal with functions that depend on 
time t and certain parameters θ. Independently, but 
following the same idea, the degradation process is a 
probabilistic concatenation between the time-to-
failures F = f (t | θ) and time-to-repair R = f (t | θ). This 
time, the variables are modeled with frequency 
models, i.e., probability distributions. At this point, 
this is where the connection and relevance of the 
DDSA layer are present. As we can see, the fitting 
process ensures a parametric distribution selection 
close to the shape of the actual data filtered from the 
SAP-SCADA systems. At this point of the description, 
the entry points of the integrated digital platform, 
which are: degradation data and planned 
maintenance data, are also evident. 

Crucial for sensible coordination of maintenance 
activities is the starting point of the maintenance 
scheduling of the component, overhead cranes in our 
case, and the degradation modeling process. The 
starting point for maintenance scheduling is provided 
by the optimization model implemented at the system 
level when coordination is requested. The 
degradation modeling process is managed by the 
DDSA layer using the updated information available 
in the monitoring systems. In summary, we can say 
that the overhead crane capacity model is a stochastic 
Markov chain Monte Carlo (MCMC) process. 

 
Figure 1. Functional view at the component level. 
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Figure 2. Functional view at the system level. 

Once the number of overhead cranes involved in 
the system is known, the modeling steps described 
above are applied for each overhead crane 
independently z1 = f (t | θ1), z2 = f (t | θ2), …, 
zN = f (t | θN). 

Fig. 2 shows the system-level modeling 
composition. 

Once the component-level modeling step is 
achieved for each crane, and given the relationship 
between them, i.e., the series-parallel block diagram, it 
is possible by convolution to build the stochastic 
functional system capacity X = f (t | θS), where again t 
is the time and θS is a set of parameters that depends 
on other parameters modeled in previous steps. Once 
system-level availability A(t) is obtained, which in our 
case is a stochastic process X = f (t | θS) when Monte 
Carlo simulations are used, and knowing the function 
that describes the needs of the requested service      
Y = f (t | θP), again using a convolution process, we 
can estimate performance metrics R = f (t | θS,P) that 
measure the efficiency and adequacy of the system 
providing the service, in our case how adequate the 
actual system is to fulfill the requested service. As we 
can deduce, if the metric performance measures the 
system's adequacy, then we can use the metric to find 
the best operating point for the system. 

Knowing that we are modeling two contributors, 
degradation and maintenance and that one is random, 
referring to degradation, we can use this approach to 
find the best maintenance scheduling for the system 
such that the performance metric provides the 
lowest/highest possible value. In the end, the 
optimization model manages the starting point of the 
maintenance schedule for each overhead crane 
considered to achieve the goal. Having described the 
process from the most granular to the highest point, 
we can state that the DDSA layer plays an essential 
role in the system performance assessment because it 

consequently ensures the search for a sensible 
maintenance scheduling for the system. 

3 RESULTS AND DISCUSSION 

In this section, we apply the proposed fitting 
methodology in a case study, i.e., the DDSA layer, as 
an example of its implementation in practice. The 
starting point is the actual filtered degradation data. 
The system under study is made up of 33 different 
overhead cranes. The applied fitting process is the 
same, following the flow diagram in Fig. 3 of 
reference [18] and the algorithm presented in the 
previous section. For illustrative purposes, the 
selected example and the data described below are 
from a specific 50 tons overhead crane. Tab. 1 shows 
the raw degradation data for the overhead crane 
analyzed, with 59,501 hours of continuous operation 
(6.8 years) and 355 hours of the replacement or repair 
process. 
Table 1. Raw Degradation Data ________________________________________________ 
Time-to-Failure (hours)   Time-to-Repair (hours) ________________________________________________ 
22; 487; 1,636; 635; 505; 1,044;  49; 4; 5; 7; 4; 6; 7; 2; 29; 6; 3; 4;  
98; 913; 79; 18; 170; 333; 484;  7; 2; 30; 7; 4; 4; 2; 1; 4; 1; 1; 10;  
249; 430; 50; 65; 2,382; 1,044;  1; 1; 12; 7; 7; 2; 1; 4; 4; 1; 5; 1;  
1,150; 2,663; 228; 1,559; 688;   1; 2; 2; 3; 4; 6; 2; 4; 2; 4; 3; 2; 2;  
134; 1,062; 595; 9; 353; 40; 126;  8; 2; 3; 4; 3; 1; 3; 1; 1; 3; 5; 3; 8;  
1,264; 1,244; 67; 2,592; 90; 1,919; 7; 1; 2; 1; 2; 1; 1; 1; 1; 1; 1; 3; 1;  
2,943; 383; 324; 89; 1,292; 433;  4; 3; 1; 1; 1 
351; 2,109; 1,060; 1,204; 1,054;   
1,550; 471; 240; 2,094; 1,405;    
3,220; 829; 223; 29; 462; 657;    
511; 68; 766; 1,842; 2,476; 280;   
486; 50; 206; 279; 917; 104; 24;   
237; 660; 125; 127; 763; 205; 332;  
204  ________________________________________________ 
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As described in previous sections, F and R 
variables are analyzed independently and are the 
inputs of the DDSA layer. Consequently, we apply the 
same flow diagram for each variable independently. 
Tab. 1 highlights that the failure frequency is higher 
than ten, so we fit the degradation data to all the 
possible single distributions available in the list (the 
case study was selected to apply the complete 
diagram). 

The complexity and size of a 50 tons overhead 
crane mean that, for certain failures, more than one 
group of workers must fix the unexpected failure 
(multiple or parallel actions). This condition of 
parallel repair tasks introduces noise into the stored 
data. For example, one group of workers completes 
the repair task, and the other is still working, or 
during the repair time, other potential problems are 
found, and the repair time is extended in one of the 
groups. All situations described above are treated 
with filters in the data just before we calculate the F 
and R variables. For example, in cases with multi-
actions (multiple tasks simultaneously), we set the 
failure event to the earliest action and the repair event 
to the latest action. 

The fitting process of the single theoretical 
distributions can be defined as a constrained 
multivariate non-linear objective function 
optimization problem. This investigation solved the 
parameter estimation based on the maximum 
likelihood estimation (MLE) method for each fitted 
distribution with a Sequential Quadratic 
Programming method. Knowing the features 
underlying the fitting process, Tab. 2 and Tab. 3 list 
the final fitted distributions after we apply the infinite 
mean and variance filter to the data presented in Tab. 
1. 
Table 2. Best distribution fitted for historical data F. ________________________________________________ 
ID  Parameters  Name     AIC Test ________________________________________________ 
3  µ = 743.7660 Exponential   1219.87 ________________________________________________ 
 
Table 3. Best distribution fitted for historical data R. ________________________________________________ 
ID  Parameters  Name     AIC Test ________________________________________________ 
12  µ = 4.4402   Inverse Gaussian 377.64 
  λ = 2.7741 ________________________________________________ 
 

In addition to the AIC criterion for selecting the 
final decision, Tab. 4 and 5 also include two well-
established goodness-of-fit tests in the literature, the 
Kolmogorov-Smirnov (KS) test and the Anderson-
Darling (AD) test. As expected, not all goodness-of-fit 
tests are aligned, and, as we know, all have strengths 
and weaknesses depending on the object of study. 
While the AD test focuses on how well the tail of the 
distribution fits the data, the KS test relies on the full 
support of the distribution. However, the AIC 
criterion populated stable selections for the historical 
degradation data tested. 
Table 4. Best distribution for F (contamination vs. data) ________________________________________________ 
ID    Parameters Name   AIC  KS   AD ________________________________________________ 
3 (Data)  µ = 743.77 Exponential 1219.87 0.5782 0.4607 
3 (Cont.) µ = 791.07 Exponential 2457.48 0.7694 0.8847 ________________________________________________ 
 
 
 

Table 5. Best distribution for R (contamination vs. data) ________________________________________________ 
ID    Parameters Name  AIC  KS  AD ________________________________________________ 
12 (Data) µ = 4.44  Inverse  377.64 0.2063 0.3193 
    λ = 2.77  Gaussian 
12 (Cont.) µ = 4.42  Inverse  755.97 0.6189 0.5224 
    λ = 2.75  Gaussian ________________________________________________ 
 

As a result of the implemented fitting process, Tab. 
2 and Tab. 3 show the parameters of the estimated 
distribution based on the MLE method for the best fit 
according to the AIC criterion for the historical F and 
R degradation data. 

Additionally, Figs. 3 and 4 show the visualization 
of the empirical cumulative distribution function 
(CDF) versus the theoretically fitted CDF (including 
the confidence interval), demonstrating a coherent 
approach to selecting the theoretical fit. As a result, 
we obtain the closest fit to the degradation data, and 
meanwhile, we introduce additional complexity into 
the model only when necessary to achieve higher 
accuracy (parsimony). The results generated in this 
section are evidence of how the implemented DDSA 
layer guarantees robust and accurate final selections 
in the fitting process, which leaves the database 
structure ready to be used by the optimization model 
in the final stage of the process (coordination of 
maintenance strategies). 

There are additional validations to evaluate the 
performance of the self-analysis layer, which consists 
of changing the input data in a controlled way and 
then re-evaluating the fitting selection process. Here, 
we conduct two tests. The first one consists of 
contaminating the input data with new values 
generated from the final selections, and the second 
one consists of removing one by one the last records 
in the dataset. In both cases, the process is re-assessed 
after the change. For the first additional validation, we 
conducted a simple experiment. We generate a new 
sample from the final selections (for both cases, F and 
R) with the same size as the original data, then 
combine both samples (real data and generated data) 
into one, and then the DDSA layer is used again 
following the same process. Tab. 4 and Tab. 5 show 
the results of this experiment. The parameters of the 
distribution change, but the final selection is the same. 
Moreover, both goodness-of-fit improved their results 
as expected. 

 
Figure 3. Empirical versus Theoretical CDF (Best fit) for 
historical data F. 

In addition, Figs. 5 and 6 show the new fit plots of 
the empirical CDF versus theoretical CDF (now 
contaminated data), evidencing the reduction of the 
confidence intervals compared to Fig. 3 and Fig. 4. 
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Figure 4. Empirical versus Theoretical CDF (Best fit) for 
historical data R. 

 
Figure 5. Empirical versus Theoretical CDF (Best fit) for F-
contaminated data. 

 
Figure 6. Empirical versus Theoretical CDF (Best fit) for R-
contaminated data. 

In the second additional validation, the experiment 
consists of removing the last records in the dataset 
one by one and assessing the changes in the final 
selected distributions. This experiment is intended to 
check what happens when we recalibrate the 
parametric distributions, i.e., equivalent to checking 
what happens when new failure records appear. In 
particular, this experiment applies to failure data. The 
test results are shown in Tab. 6. As we can see, even 
by removing the last ten records from the dataset, the 
final selected distribution remains the same. 
Table 6. Best distribution fitted for historical data F ________________________________________________ 
Scenario  Name   Parameter  AIC Test ________________________________________________ 
Dataset  Exponential µ = 743.77  1,219.87 
1 point       µ = 750.60  1,206.10 
2 points       µ = 755.98  1,191.97 
3 points       µ = 763.13  1,178.16 
4 points       µ = 763.13  1,162.89 
5 points       µ = 771.62  1,149.27 
6 points       µ = 780.36  1,135.64 
7 points       µ = 780.36  1,135.64 
8 points       µ = 782.01  1,120.63 
9 points       µ = 789.58  1,106.70 
10 points      µ = 800.37  1,093.28 ________________________________________________ 
 

 

This experiment is an additional result that 
supports the decision diagram implemented for 
fitting, which can obtain sensitive results when the 
data changes. Moreover, the results show how crucial 
online self-calibration is in capturing the changes in 
the data. It is clear from Tab. 6 how the 
parameterization (µ) changes with the data. 

At this point of the investigation, we can conclude 
that the data are correctly, accurately, and robustly 
filtered, processed, and stored in the database, which 
ensures clean inputs for the optimization model used 
in the final stage of the investigation (coordination of 
maintenance activities). Knowing that the risk model 
implemented on the integrated digital platform relies 
on historical data to estimate risk indicators, the 
approach implemented on the DDSA layer is crucial 
to ensure robust data processing to guarantee accurate 
predictions. 

4 CONCLUSIONS 

The research presented here validates the design and 
implementation of the DDSA layer that ensures 
robustness in the filtering and synthesis of the 
degradation data (time-to-failure and time-to-repair) 
of the set of overhead cranes considered in this study. 
The DDSA layer outcomes are probability 
distributions used to simulate probable failures in the 
group of overhead cranes, allowing the holistic 
coordination of maintenance activities by evaluating 
global system risk indicators. The main research result 
is validating the robust and accurate filtering and 
synthesis of the degradation data used to coordinate 
maintenance activities. 

Robustness features come from a formal 
predefined fitting process (implementation tested in 
practice in this contribution using the data presented 
in Table 1), which allows us to obtain coherent 
distributions to simulate the degradation process due 
to system operation, given the online historical 
degradation data. The accuracy comes from a formal 
technological and modeling connection between 
degradation due to the system operation, maintenance 
activities schedule, and management process (selected 
manufacturing industry needs) through the 
intermediary database created for maintenance 
activities coordination. 

The proposed solution for data filtering, synthesis, 
and self-analysis (the DDSA layer) illustrates the 
practice of self-decision-making focused on operating 
technical objects. It is an example of the process of 
adaptation and transition to the digital industry 
through machine learning approaches. The results 
achieved so far in this paper through the presented 
validations (degradation fitting) complement and 
guarantee the robustness of other processes of the 
engineering solution (coordination of maintenance 
activities). 

Thanks to the self-contained process designed and 
shared in this paper, we will be able to analyze in 
future works the impacts introduced by changes in 
the data over time, the data window, the criticality of 
each overhead crane in the system, and the system 
degradation over time. 
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