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1 INTRODUCTION 

Given the current geopolitical situation and the 
previous crisis related to the COVID pandemic, it is 
reasonable to analyse transport and logistics networks 
in terms of their criticality. In the case of transport, 
this concept can be understood in various aspects.  

For the proposed model, the criticality is analysed 
in the context of connectivity/reliability of 
vertices/edges, traffic flows in the transport network 
and the impact of events blocking their nodes/edges. 
The transport is one of the 8 Critical Infrastructures 
(CI) – defined by the Act of 26 April 2007 on crisis 
management (Journal of Laws 2007 No. 89 item 590).  
In the case of the European Union, the establishment 
of a critical infrastructure protection program was 
preceded by terrorist attacks on four city trains in 
Madrid in 2004, the subway in London in 2005 and an 
airplane flying from Great Britain to the USA in 2006. 
However, the functioning of this program made it 
possible to respond appropriately in 2010 to the 
paralysis of European air traffic caused by the 
volcanic eruption in Iceland. The effects of this event 

were felt not only on the old continent but all over the 
world. 

The events mentioned above, and the 
consequences of their occurrence showed how much 
the national and global economies depend on the 
condition of transport (individual elements of the 
transport system), regardless of the branch to which 
these events are concerned. 

The events of the last four years confirmed the 
justification for introducing a critical infrastructure 
protection policy. First, the COVID-19 pandemic 
showed how much societies depend on global 
transport. In turn, Russia's attack on Ukraine and the 
sanctions adopted by EU countries aimed at, among 
others, limiting oil and gas orders from Russia 
showed that it is necessary to be able to quickly make 
decisions about changing supply directions. 
Unfortunately, this is not an easy and quick process, 
so it is worth having prepared action scenarios in case 
of such situations. This is where various analytical, 
forecasting and decision-making models can be 
useful, making the transport system more resilient. 
The experience of the last several decades shows that 
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for the proper functioning of the economy and 
society, it is essential that the transport system (all its 
elements) is reliable and resistant to various 
unfavourable external factors. Therefore, you should 
work on methods that allow you to: 
− finding weak links in the functioning of the 

transport system, 
− to identify potential threats, 
− to reduce or even eliminate these threats, 
− to mitigate the effects of threats. 

Threats to critical infrastructures may be of natural 
or anthropological origin; therefore, the methods of 
identifying threats depend on the source of their 
origin, and consequently, various methods are used to 
mitigate the effects of these threats. However, the 
most important thing seems to be finding weak links 
in the transport system. In the technical part, they will 
be related to means of transport or infrastructure and 
less often to legal regulations or economic aspects. For 
example, damage to a vehicle may result in blocking a 
section of linear infrastructure. However, this will be 
possible more often when there are bottlenecks in this 
infrastructure or increased traffic intensity in this 
section. When we find such elements of the transport 
system or, more specifically, the transport network, 
we can react in advance and counteract unfavourable 
crises. Thus, we come to the need to solve problems 
related to the reliability, resilience, vulnerability, or 
sensitivity of transport networks as the most crucial 
component in the transport system, allowing the 
implementation of its main tasks. 

Thus, the article aims to establish critical paths 
(edges) and nodes (vertices), as well as their 
modelling, depending on the situation in the region. 
The tool can be used to determine new transport 
networks, considering crises that affect the 
determination of additional or other edges and 
dominant vertices. So far, the mathematical analysis 
models used have considered separately either the 
vertices or the edges in the graph representing the 
transport network. This article proposes a 
comprehensive approach to modelling - simultaneous 
consideration of vertices and edges - this is the 
novelty of this article. For the tested model, the 
criticality is analysed in the context of 
coherence/reliability of vertices/edges, traffic flows in 
the transport network, and the impact of events 
blocking their nodes/edges. 

The structure of the paper is as follows. The 
Introduction section presents the main aspects of the 
considered problem. The state-of-the-art section 
shows the literature review. Further, the basic 
notations are defined. Finally, the theoretical methods 
and algorithms with real-world applications are 
introduced. 

2 STATE OF THE ART 

The introductory considerations state that the 
transport network is a "bloodstream" determining the 
region's development, directly proportional to the 
economic, development and military potential. The 
network is a chain of interconnected vessels whose 
opportunities and threats are replicated in other 
elements. 

According to the literature ([23], [64]), the 
transport system is defined as a combination of 
elements such as means of transport, infrastructure, 
human resources and their interactions, which serve 
to generate demand for travel in a given area and to 
satisfy them by providing transport services. The 
above definition is very general but, at the same time, 
easy to adapt to various modes of transport. It allows 
the use of a structure of connections between the 
transport system elements adapted to the problem 
being solved. It was assumed that the best and most 
natural way of recording transport systems is a 
network representing the infrastructure of this system 
and making it possible to describe the flow of traffic 
flows occurring in it ([59], [64]). We should agree with 
this because the structure and traffic flows in the 
transport network best reflect the relationships 
between individual elements of the transport system 
and thus determine it. There are three main types of 
transport networks ([51], [64], [66]): 
− All vertices of the same degree characterise regular 

transport networks. The regularity of the number 
of incident edges about the vertex indicates a high 
level of spatial organisation, as in the case of a road 
network [66]. 

− Small-world transport networks are characterised 
by dense connections between nodes in the close 
neighbourhood with a simultaneous small set of 
crucial connections with nodes in the further 
neighbourhood. A characteristic feature of this 
type of transport network is high sensitivity to 
failures around nodes with many close neighbours 
(sometimes called hubs) ([29], [66], [73]}. 

− Scale-free transport networks are characterised by 
a hierarchical system with several vertices with 
many neighbours and a small number of vertices 
with a small set of neighbours (low vertex degree). 
This type of network is characterised by ease of 
evolution because adding new network nodes will 
prioritise connecting them to larger nodes ([9 - 10], 
[66]). 

Due to the characteristics of transport 
infrastructure, analysing transport networks at the 
pre-design stage or assessing and improving them 
during operation is best carried out using 
mathematical modelling and optimization methods 
([38],[45], [57-58], [77-78]). 

The most common model for presenting the 
structure of transport networks is graphs. They are 
composed of two sets: V – vertices (nodes) and E – 
edges (arcs). They are denoted as G(V, E). One of the 
main applications of graph theory is the analysis of 
transport networks and systems ([32], [36], [38-40], 
[41], [44], [64], [57]). It was the attempt to solve the 
problem of bridges in Königsberg by the famous 
Swiss mathematician Leonhard Euler in 1736 that 
gave rise to graph theory and thus determined the 
meaning of the existence of this mathematical 
construction used to model and solve problems of 
transport networks ([3], [13-15], [30], [46], [60]) 
computer ([27], [29], [36], [66], [74]), and in recent 
years also social ([51], [73]). 

The most crucial transport problems solved using 
graph theory include: 
− the problem of the Chinese postman; 
− travelling salesman problem; 
− flows in networks; 
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− spanning tree. 

Various ways of solving the Chinese postman 
problem can be found, among others, in the literature 
[32], [41]. In turn, various solutions to the travelling 
salesman problem are presented, among others, in [4], 
[5], [7], [37], [41], [55], [56], [57], [59], [64]. This 
problem has also been solved in terms of dynamic 
graphs, which take into account dynamic changes in 
the networks they represent, such as 
adding/removing edges or vertices ([2], [71], [76]). 

Another problem of graph theory, which is 
essential in the analysis of any networks, is the search 
for the smallest or largest spanning tree [12], [36], [75] 
or the search for maximum flow in networks [35], [59].  

Graph domination is essential in analysing 
transport networks ([19], [38 – 40], [44], [72]). It is used 
to solve problems such as: 
− location - for example, the problem of minimizing 

the distance that a person must travel to reach the 
nearest facility offering services that are critical 
from the point of view of their life and health (e.g. 
hospitals, police or fire stations), assuming their 
constant number [43-44], [72]; 

− distance – for example, a problem in which the 
maximum distance to an object is fixed and the 
number of devices needed to serve all users should 
be minimized (e.g. base stations of a cellular 
network) [19], [43]; 

− related to the search for representative sets, for 
example, to monitor communication or electrical 
networks, as well as in geodetic measurements 
(one should find the smallest number of places 
where the surveyor must measure the height so 
that they cover the entire surveyed area) [11], [72]; 

− vulnerability of transport networks [17], [40], [77]. 

Moreover, by using graph theory to describe 
transport networks, Kansky proposed a series of 
indicators describing transport networks in the 1960s 
[69] at two levels of detail. The first refers to defining 
parameters or indicators concerning the entire 
network, while the second relates to the nodes. The 
primary assumption of their applicability is the fact 
that they provide methods allowing [69]: 
− expressing the relationship between their values 

and the network structure, 
− comparing transport networks with each other at 

specific moments in time, 
− comparing the development of transport networks 

at different times. 

In the 1980s, scientists dealing with networks, 
including transport and computer networks, 
concluded that searching for the shortest path in a 
network, the smallest spanning tree or the maximum 
flow in networks is insufficient. They began to pay 
attention to the connection problem between two 
vertices of the transport network. They thus turned 
their attention to network reliability issues, including 
transport networks. Currently, research on the 
reliability of transport networks is dominated by three 
main types: 
− connectivity reliability – understood as the 

probability that network nodes will remain 
connected – a measure describing the topological 
structure of the transport network ([8], [13], [15-
17], [23], [46], [49]); 

− travel time reliability – understood as the 
probability that the journey between a given 
source and sink will take place within a specific 
period ([6], [14], [23], [50]); 

− capacity reliability – understood as the probability 
that the capacity of the transport network is equal 
to or greater than the desired level when the 
capacity of the arc is random [24], [25], [50]. 

A concept closely related to the reliability of 
transport networks or, more broadly, transport 
systems is their sensitivity. Unfortunately, this 
concept is not clear. They can be understood in terms 
of reliability and risk in some situations [14], [31], [65]. 
The sensitivity of the transport network may also be 
expressed in terms of too low a level of services 
provided and related problems [16-17], [49], [52], [63], 
[68], as well as costs resulting from the unavailability 
of this network [18], [61]. Moreover, some studies 
point out that the sensitivity of the transport network 
is its low resistance to natural threats or threats from 
other sources [47-48]. In turn, other studies point to 
sensitivity related to rare but high risk [16], which 
correlates to the possibility of providing services and 
maintaining continuity of operation [34], [40], [76]. 
This approach corresponds to the concept of critical 
infrastructures [26], [28]. 

In particular, the last 25 years have made 
governments of many countries around the world 
aware that certain aspects of society's life are 
particularly exposed to the negative impact of natural 
factors, as well as those resulting from acts of 
terrorism or vandalism [52], [64]. Depending on the 
country, specific services, infrastructures, and, in a 
broader sense, sectors have been identified, which 
have been called critical because the lack of access to 
them causes significant perturbations and problems in 
the functioning of residents [20], [21], [22], [26], [28], 
[69]. Specific infrastructures or critical sectors allow 
for special attention to be paid to their safe and 
reliable operation [20-22], [40], [53]. For this reason, it 
is essential to have appropriate tools used when 
analyzing the functioning of these infrastructures [20-
21], [31], [33], [40] and optimization [38], [53], [56]. 

A significant facilitation of the search for new, 
effective methods of analysis and optimization is the 
translation of the problem of transport network 
reliability into the language of the theory of systems 
and complex networks [1], [10], [51], [73]. Thanks to 
this, it is possible to use methods of analysis, 
modelling and optimization of the reliability and 
sensitivity of complex technical systems [20-21], [53], 
62] about transport networks [13], [38-40]. 

3 BASIC NOTATIONS 

In further research, we consider the simple, 
undirected (sometimes also weighted) graphs G(V, E) 
constituted by nodes (vertices) set V (or V(G)) and arcs 
(edges) set E (or E(G)). We adhere to the convention 
that n=|V(G)| and m = |E(G)|. Let u, v ϵ V(G), then the 
edge between these vertices in a simple graph is 
denoted as {u, v}, which in shortened form is often 
written as uv. According to the above definition, we 
consider unordered pairs. It should be noted that 
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vertices are edge ends, i.e. they are adjacent to each 
other and, at the same time, incident to the edge they 
create.  

The set of all vertices of the graph G(V, E) adjacent 
to vertex v is called a neighbourhood and is denoted 
by NG(v) or N(v). The set NG(v)∪{v} is called the closed 
neighbourhood of a vertex v in the graph G and 
denoted by NG[v]. For any subset of the set of vertices 
in graph G, i.e. A⊆G the neighbourhood is defined as 
NG(A)=⋃v∈ANG(v). The degree of a vertex v in a graph 
G is the number of vertices belonging to the set NG(v) 
and is denoted as degG(v)=|NG(v)|. 

A line graph L(G) (also called an adjoint, conjugate, 
covering, derivative, derived, edge, edge-to-vertex 
dual, interchange, representative) of a simple graph G 
is obtained by associating a vertex with each edge of 
the graph and connecting two vertices with an edge if 
and only if the corresponding edges of G have a 
vertex in common.  

3.1 Spanning trees 

A spanning tree TS(G) is a subset of a graph G, with all 
the vertices covered with the minimum possible 
number of edges. In other words, a spanning tree 
contains all the vertices of the graph and only those 
edges that do not form cycles in such a graph. 
Regarding the topology of such a tree, the smallest 
will mean the one whose set of edges is the smallest, 
while the largest will mean the most extensive such 
set of edges. When describing graph edges using 
numerical weights, the smallest spanning tree is the 
one for which the sum of the weights is the smallest. 
Similarly, the largest spanning tree is the one in which 
the sum of the edge weights is the largest. 

The problem of finding a minimal spanning tree 
(for weighted graphs) uses Kruskal’s algorithm as a 
way to resolve this problem. The short description of 
this algorithm is presented as algorithm 1. In case of 
simple undirected graph, the Kruskal’s method [54] is 
proper under assumption that every edge weight is 
equal to 1. In this way, the minimal spanning tree is 
the tree with the minimum number of edges that 
constitute the spanning tree of graph G. 
Algorithm 1 [Kruskal’s algorithm] 
1: Input (𝐺𝐺,𝑤𝑤e) with fixed edge weighted function 𝑤𝑤e; 
2: Output Minimal spanning tree TS(G); 
3: Find the least weight of the edges in the graph (if there is 
 more than one, choose randomly). Mark as red colour; 
4: Find the next smallest unlabeled (uncoloured) edge in the 
 graph that is not marked in red and colour it; 
5: Repeat step 4 until you reach every vertex in the graph (or 
 until you have n-1 coloured edges) 
6: The coloured edges form the desired minimum spanning 
 tree. 
7: return TS(G). 

3.2 Domination in graphs 

A dominating set for a graph G is a subset D of its 
vertices, so any vertex of G is either in D or has 
neighbours in D ([30], [35], [44]). The domination 
number γ(G) is the number of vertices in the smallest 
dominating set for G. An edge-dominating set for 
graph G is a subset DE⊆E such that every edge not in 
DE is adjacent to at least one edge in DE. A minimum 

edge-dominating number equals the power of the 
smallest edge-dominating set [38-40], [70]. 

Based on this definition, algorithm 2 [40] is 
presented. An important assumption for him is that 
the input graph must be connected, simple, and non-
empty. 
Algorithm 2 [Minimal-vertex-dominating-set] 
1: Input 𝐺𝐺=(𝑉𝑉,𝐸𝐸). 
2: Output Minimal vertex-dominating set of graph G. 
3: Fix 𝑆𝑆:=0; all vertices are white. 
4: while (white vertices exist) do 
5: choose v∈{𝑥𝑥|𝑤𝑤(𝑥𝑥)=𝑚𝑚𝑚𝑚𝑥𝑥𝑢𝑢∈𝑉𝑉{𝑤𝑤(𝑢𝑢)}} and it has the 
 maximal number of white neighbours. 
6: 𝑆𝑆:=𝑆𝑆∪{𝑣𝑣}; vertices in S are coloured by black; their 
 neighbours are grey. 
7: end while. 
8: return S. 
9: if in S there are vertices, what dominates the same 
 vertices then 
10: delete a vertex from S, which dominates only vertices 
 dominated by other vertices from S; return 𝐷𝐷=𝑆𝑆\{𝑣𝑣} 
11: else 
12: 𝐷𝐷=𝑆𝑆 
13: end if 
14: return D. 
 

This algorithm is complemented by algorithm 3, 
which finds the value of the weighted domination 
number [45]. The pseudo-code is proposed below.  
Algorithm 3 [Weighted-domination-number] 
1: Input (𝐺𝐺,𝑤𝑤𝑣𝑣) with fixed vertex weighted function; 
2: Output weighted domination number 𝛾𝛾𝑤𝑤(𝐺𝐺) of graph 
(𝐺𝐺,𝑤𝑤𝑣𝑣); 
3: for 𝑖𝑖=1 to |𝑉𝑉| do 
4: find dominating set of G, starting from 𝑣𝑣𝑖𝑖∈𝑉𝑉, and save it 
 as 𝐷𝐷𝑖𝑖(𝑣𝑣𝑖𝑖); 
5: find total weight Wi(vi)=∑vi∈Diwi(vi) of dominating sets 
 𝐷𝐷𝑖𝑖(𝑣𝑣𝑖𝑖); 
6: end for; 
7: find min{Wi(vi):vi∈V,i=1,...,|V|}→γw(G); 
8: return 𝛾𝛾𝑤𝑤(𝐺𝐺). 
 

The third algorithm introduced as the basis for 
further theoretical and practical results is a 
deterministic discrete-time model of fire spread on a 
graph G. Hartnell introduces this concept in [42], and 
call firefighting problem.  This model of fire spread 
considered how firefighters can act to stop a fire 
outbreak. An outbreak of fire starts at a set of root 
vertices of G at time t=0. In response, firefighters 
defend f vertices at time t=1 [42]. The pseudo code of 
proposed algorithms for finding solution of this 
problem is presented as algorithm 4. 
Algorithm 4 [Firefighting problem (or virus control)] 
1: Input graph G(V,E); 
2: Output the set of vertices under fire and non-fire;  
3: A fire breaks out at a vertex of a graph.  
4: The firefighter (or defender) then chooses any vertex not 
 yet on fire (or affected by the virus) to protect.  
5: The fire and firefighter alternate moves on the graph due 
 to the fire can no longer spread.  
6: The firefighter has chosen a vertex; it is protected or safe 
 from future fire moves.  
7: After the firefighter’s step, the fire spreads to all vertices 
 adjacent to the ones on fire, except those protected. 
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4 THEORETICAL RESULTS 

This part of the article presents new methods for 
finding critical elements in transport networks. The 
proposed algorithms are based on those shown in the 
previous section. This analytical tool can be used to 
establish critical paths (edges) and nodes (vertices) 
and their modelling, depending on the situation in the 
considered region. The criticality is analysed 
regarding the consistency/reliability of nodes 
(vertices) / arcs (edges), traffic flows in the transport 
network, and the impact of events blocking their 
nodes/arcs. 

Before we propose new algorithms to identify the 
critical elements of transport networks, some 
preliminaries must be introduced to find the edge-
dominating set. The algorithm 5 presents a way to 
find the minimal edge dominating set. It uses the 
concept of line graphs. 
Algorithm 5 [Minimal-edge-dominating-set] 
1: Input 𝐺𝐺=(𝑉𝑉,𝐸𝐸). 
2: Output Minimal edge-dominating set of graph G. 
3: Define line graphs L(G) of graph G; 
4: use algorithm 1 for graph L(G); 
5: return DL(G)¬ 
6: DE= DL(G). 
7: return DE. 
 

For simple, undirected graphs the edge-
domination number is the cardinality of the minimal 
edge dominating set. The value of this number can be 
found based on the result obtained from algorithm 5. 
Because a transport network can be described by 
weighted graph, the method for finding an edge 
weighted domination number is proposed in 
algorithm 6.  
Algorithm 6 [Edge-weighted-domination-number] 
1: Input (𝐺𝐺,𝑤𝑤e) with fixed edge weighted function; 
2: Output edge weighted domination number 𝛾𝛾𝑤𝑤e(𝐺𝐺) of 
 graph (𝐺𝐺,𝑤𝑤e); 
3: Define weighted line graph Lw(G) of graph (𝐺𝐺,𝑤𝑤e); 
4: use algorithm 3 for graph Lw(G); 
5: return 𝛾𝛾𝑤𝑤(Lw(G)); 
6: 𝛾𝛾𝑤𝑤e(𝐺𝐺):= 𝛾𝛾𝑤𝑤(Lw(G)); 
7: return 𝛾𝛾𝑤𝑤e(𝐺𝐺). 
 

The next step is defined critical components of the 
transport or logistics networks. Referring here to the 
fireman's algorithm (algorithm 4) is necessary. A 
critical node (vertex) is the first node (vertex) in the 
graph G that is not subject to the fire expansion of the 
greedy algorithm 4, thus determining all vertices in 
the further branches of the graph. Analogically, the 
critical arc (edge) is the first free arc (edge) in the 
graph that is not subject to the fire expansion of the 
greedy algorithm 4, and thus determines all edges in 
the further part of the graph branches. 

Now, the new approach to identify the critical 
elements of a transport network can be proposed. The 
solution for this problem is algorithm 7. 
Algorithm 7 [Identifying the critical elements of the 
transport/logistic network] 
1: Input G(V,E) or G(V,E,we) represents a transport/logistics 
 network; 
2: Output sets of critical vertices (VS) and edges (ES); 
3: Find the minimum spanning tree of G - TS(G) 
 (e.g. algorithm 1). 

4: Find the dominating set of TS(G) (greedy algorithms: 
 e.g. Algorithm 5 or 6). 
5: Find the edge-dominating set of the TS(G) started in 
 vertices from D(TS(G)) (greedy algorithm and line 
 graphs). 
6: For these vertices and edges, use the Firefighter’s 
 algorithm (algorithm 4). 
7: Find the strategic vertices and edges. 
 

This algorithm uses algorithms 1-6 depending on 
what type of graph the transport network represents. 
It should be emphasized that it is a greedy algorithm. 
At the same time, the problem it solves is an NP-
complete problem. Therefore, it should be noted that 
it is a tool supporting analysis and decision-making 
but requires some caution in interpreting its results. 
They may not always be optimal. However, based on 
this algorithm, we get the following possibilities. We 
can determine critical vertices that protect individual 
tree arcs to prevent the graph's further atrophy. If fire 
infects the graph, a „fireman” extinguishing fire at the 
vertices and edges guarantees the graph's stability. 
The first fire-free vertices and edges are called the 
CRITICAL VEREX and the CRITICAL EDGE – in 
these critical elements should be a logistical backup, 
including sufficient tools to prevent the problem from 
spreading (for example deals with congestion). 

It is necessary to give a tool to reverse the "fire" 
(congestion) spreading in the network. It means 
finding alternatives for the "occupied" nodes and arcs 
or possibly creating a separate path to distribute the 
"fire". Therefore, we get new connections between 
system-inefficient nodes and those that can "take 
over" the additional “fire” (traffic flow). The proposed 
solution is given as the algorithm 8. 
Algorithm 8 [Identifying the alternative paths] 
1: Input G(V,E) or G(V,E,we) as the result of the algorithm 7; 
2: Output alternative paths PA; 
3: Build an extended graph GE=(VE,EE) for analysed area; 
4: find domination set in G of vertices occupied by “fire” 
 with the highest degree DF(G);  
5: while ((DF(G)≠∅) and (not all vertices from DF(G) 
 occupied by “fire” are connected)) do 
6: select the highest degree vertex w∈DF(G); 
7: if there is a connection in GE between the vertex w and the 
 vertex v occupied by the fireman in G then 
8: connect them with via a new edge not occupied by the 
 “fire” (e∈EE); 
9: else 
10: connect w with v through additional vertices from the set 
 VE≠V (if there is a relationship in the real connection 
 network that allows the implementation of the transport 
 task); 
11: add edges e to set of an alternative paths PA; 
12: end while; 
12: return PA. 

5 APPLICATIONS 

This section shows possible applications of the 
methods introduced in section 4.  

Let us consider a graph describing the model of 
the map of Poland, the northeastern region. The graph 
representing this region is on the figure 1. It is 
necessary to mention that there are several elements 
of the critical infrastructures in the considered region, 
e.g.: the waterpower plant in Włocławek, the power 
plant in Ostrołęka, the Dębe hydroelectric power 
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plant (on the barrage damming water in Zegrzyńskie 
Lake), potential facilities in Pomerania: offshore and 
the power plant in Żarnowiec, as well as bridges: 
Zegrze, Serock, Pułtusk, Rozan.  

Only the infrastructure that meets the 
requirements for transporting oversized and 
dangerous cargo was adopted for analytical purposes. 
Thus, we consider only a mixture of the railroad and 
roads, but we show graph representation for railways, 
roads, and inland waterways. 

Figure 1 shows railway connections with weights 
corresponding to the speed achieved on a given route. 
The Pan-European Railway (TEN – T) route receives 
an additional weight of 5. 

 
Figure 1. Selected railway connections. [own study] 

The weights for figure 1 are defined according to 
table 1. 
Table 1. Weights for graph represents the railway. ________________________________________________ 
Velocity     Weight ________________________________________________ 
to 80 km/h     1 
81-100 km/h    2 
101-120 km/h    3 
121-140 km/h    4 
141-160 km/h    5 
161-200 km/h    6 
Up to 200 km/h   7 ________________________________________________ 
 

Additionally, figure 2 presents road connections, 
with their weights corresponding to the road 
numbers. The Pan-European Railway (TEN – T) route 
receives an additional weight of 5. 

 
Figure 2. Selected roads connections. [own study] 

The weights for figure 2 are defined according to 
table 2. 
Table 2. Weights for graph represents the roads. ________________________________________________ 
Road        Weight ________________________________________________ 
Number with 1 digit   1 
Number with 2 digits   2 
Number with 3 digits   3 ________________________________________________ 
 

Finally, figure 3 presents inland connections, with 
their weights corresponding to the classes of inland 
waterways. The Pan-European Railway (TEN – T) 
route receives an additional weight of 5. 

 
Figure 3. Selected inland waterways. [own study] 

The weights for figure 3 are defined according to 
table 3. 
Table 3. Weights for graph represents the inland waterways. ________________________________________________ 
Class   1  2  3  4  5 ________________________________________________ 
Weight  1  2  3  4  5 ________________________________________________ 
 

In the general case, a graph representing all the 
modes of transport described above is presented in 
Figure 4. 

 
Figure 4. Summary of three modes of transport: rail, road, 
inland waterways. [own study] 

According to assumption, we consider only roads 
and railways, as shown in figure 5. 
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Figure 5. Summary of two modes of transport: rail, road. 
[own study] 

For this graph (figure 5) we apply the algorithm 7 
and get the minimal spanning tree (figure 6 – results 
according to step 3).  

 
Figure 6. Spanning tree of graph represented considered 
transport network [own study] 

Further we go to the step 4 of algorithm7. The 
results is in figure 7.  

 
Figure 7. Domination set in spanning tree.  

The resulting domination set of TS is 
D={Żarnowiec, Czeremcha, Łuków, Elbląg, Olsztyn, 
Grudziądz, Malbork, Toruń, Warszawa, Augustów, 
Zambrów, Białystok, Pilawa, offshore}.  

This set is the base for procedure of the firefighting 
algorithm. The fire is a congestion, and the 

“firefighter” is a traffic supervision. The steps of this 
are as follows.  

Step 1 FIRE - vertices and edges coming from 
Warsaw: Mińsk Mazowiecki, Wyszków, Ostrołęka, 
Iława, Płock, Kutno. 

Step 1a FIREFIGHTER - the occupied vertex with the 
highest degree should be searched for and secured 
(e.g. Mińsk Mazowiecki). From now on, both the top 
of Mińsk Mazowiecki and all edges are determined by 
the fireman and thus are not subject to fire expansion. 

Step 2. FIRE - edges and vertices coming from 
Wyszków, Ostrołęka, Iława, Płock, and Kutno, thus 
occupying the vertices: Toruń, Augustów, Ostrów 
Mazowiecki, Malbork. 

Step 2a FIREFIGHTER - the occupied vertex with the 
highest degree should be searched for and secured 
(e.g. Ostrów Mazowiecki). From now on, the fireman 
determines the top of Ostrów Mazowiecki and all 
edges; thus, they are not subject to fire expansion. 

Step 3. FIRE takes the next edge from Toruń, thus 
occupying Bydgoszcz. 

Step 3a FIREFIGHTER - the vertices and edges 
extending from the Grudziądz should be protected, 
thus securing the rest of the arc of the graph. 

After this procedure, we get the results presented 
in Figure 8. 

 
Figure 8. Resulting graph after step 6. [own study] 

This way, we get the sets of critical nodes and arcs.  

 
Figure 9. Alternative paths. [own study] 
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To reverse the congestion process (fire) in the 
network, it is necessary to look for an alternative to 
the "occupied" vertices/edges or create a separate path 
to distribute the congestion - following the theoretical 
results (Section 4, algorithm 8). The new connections 
between system-inefficient vertices and those that can 
"hijack" the additional traffic flow is presented (black 
in figure 9). 

To summarize the practical part, it should be noted 
that: 
1 Dominating set of nodes in spanning tree for two 

modes of transport: Warszawa, Zambrów/Łapy, 
Białystok, Pilawa, Łuków, Czeremcha,  
Augustów, Malbork, Olsztyn, Elbląg, Żarnowiec, 
Grudziądz,  Toruń, offshore. 

2 Critical nodes (with arcs): Mińsk Mazowiecki, 
Ostrów Mazowiecki, Grudziądz (with critical 
edges) – it should be secured (according to be 
critical for transport network). 

6 CONCLUSIONS 

The intended purpose of the article was achieved. 
New algorithms were proposed for analysing the 
criticality of transport and logistics networks. In 
particular, new algorithms were introduced for 
finding critical network elements (nodes and arcs) and 
searching for alternative routes for these elements. 

The resulting model should be particularly subject 
to the Crisis Infrastructure Management Act because 
each edge is a bridge, the breaking of which will cut 
off strategic nodes in the operational management 
system. 

The models can be a tool for determining the 
critical/strategic edges and vertices of the region, 
considering the optimization of transport reliability 
and costs. 

Soon, the algorithms for strategic nodes and arcs 
will be proposed. Then, all models will be constituting 
the new decision support system for traffic flow 
planners and managers. 
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